Biopolym. Cell. 2025; 41(3):210.
Molecular Biomedicine
Altered expression of genes related to inflammation and coagulation in peripheral blood mononuclear cells of patients with severe COVID-19
1Melnichuk N. S., 1Kashuba V. I., 1Tukalo M. A., 2Okhrimenko P. M., 3Demchyna I. V., 1Tkachuk Z. Yu.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03143
  2. "Feofaniya" Clinical Hospital of the State Administration of Affairs of Ukraine
    21, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03143
  3. Public Health Center of the Ministry of Health of Ukraine
    41, Yaroslavska St, Kyiv, Ukraine, 04071

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes coronavirus disease 2019 (COVID-19), the respiratory illness responsible for COVID-19 pandemic. Hyperinflammation and coagulopathy contribute to disease severity and death in patients infected with SARS-CoV-2. Gene expression analysis in peripheral blood mononuclear cells (PBMCs) is valuable to evaluate disease-associated and drug-response related genes. In this study, we aimed to investigate the expression of genes related to inflammation and coagulation in PBMCs of patients with severe COVID-19. The gene expression in PBMCs (52 patients with severe COVID-19 and 59 healthy volunteers) was determined by RT-qPCR. Overexpression of the OAS1, RNASEL, MX1, EIE2AK2, IL8, IL6, IL10, F5 genes and downexpression of CD4 gene were found out in the PBMCs of SARS-CoV-2 infected patients compared to the healthy volunteers. Using the ROC curve, we found genes with an excellent (IL10, EIF2AK2, F5) and with good (FN1, MX1, RNASEL) diagnostic AUCROC. The results of this study indicate the genes in PBMCs that can be potential candidate biomarkers for diagnosis of SARS-CoV-2-induced hyperinflammation, hypercoagulation, and the evaluation of therapy effectiveness for patients with severe COVID-19.
Keywords: SARS-CoV-2, PBMCs, gene expression, hyperinflammation, hypercoagulation

References

[1] Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021; 19(3):141-54.
[2] Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol. 2020; 20(6):355-62.
[3] Malas MB, Naazie IN, Elsayed N, Mathlouthi A, Marmor R, Clary B. Thromboembolism risk of COVID-19 is high and associated with a higher risk of mortality: A systematic review and meta-analysis. EClinicalMedicine. 2020; 29:100639.
[4] Lüke F, Orsó E, Kirsten J, Poeck H, Grube M, Wolff D, Burkhardt R, Lunz D, Lubnow M, Schmidt B, Hitzenbichler F, Hanses F, Salzberger B, Evert M, Herr W, Brochhausen C, Pukrop T, Reichle A, Heudobler D. Coronavirus disease 2019 induces multi-lineage, morphologic changes in peripheral blood cells. EJHaem. 2020; 1(1):376-83.
[5] Rouhezamin MR, Haseli S. Diagnosing Pulmonary Thromboembolism in COVID-19: A Stepwise Clinical and Imaging Approach. Acad Radiol. 2020; 27(6):896-7.
[6] Bikdeli B, Madhavan MV, Jimenez D, Chuich T, Dreyfus I, Driggin E, Nigoghossian C, Ageno W, Madjid M, Guo Y, Tang LV, Hu Y, Giri J, Cushman M, Quéré I, Dimakakos EP, Gibson CM, Lippi G, Favaloro EJ, Fareed J, Caprini JA, Tafur AJ, Burton JR, Francese DP, Wang EY, Falanga A, McLintock C, Hunt BJ, Spyropoulos AC, Barnes GD, Eikelboom JW, Weinberg I, Schulman S, Carrier M, Piazza G, Beckman JA, Steg PG, Stone GW, Rosenkranz S, Goldhaber SZ, Parikh SA, Monreal M, Krumholz HM, Konstantinides SV, Weitz JI, Lip GYH; Global COVID-19 Thrombosis Collaborative Group, Endorsed by the ISTH, NATF, ESVM, and the IUA, Supported by the ESC Working Group on Pulmonary Circulation and Right Ventricular Function. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020; 75(23):2950-73.
[7] Sidhwani SK, Mirza T, Khatoon A, Shaikh F, Khan R, Shaikh OA, Nashwan AJ. Inflammatory markers and COVID-19 disease progression. J Infect Public Health. 2023; 16(9):1386-91.
[8] Moorthy S, Koshy T, Kumar MK, Silambanan S. Role of inflammatory and liver function markers in assessing the prognosis of patients with COVID‑19. World Acad Sci J. 2021; 3(6):52.
[9] Wu Y, Spaulding AC, Borkar S, Shoaei MM, Mendoza M, Grant RL, Barber BW, Johns GS, Franco PM. Reducing Blood Loss by Changing to Small Volume Tubes for Laboratory Testing. Mayo Clin Proc Innov Qual Outcomes. 2020; 5(1):72-83.
[10] Mann SA, Williams LA 3rd, Marques MB, Pham HP. Hospital-acquired anemia due to diagnostic and therapy-related blood loss in inpatients with myasthenia gravis receiving therapeutic plasma exchange. J Clin Apher. 2018; 33(1):14-20.
[11] Koch CG, Li L, Sun Z, Hixson ED, Tang A, Phillips SC, Blackstone EH, Henderson JM. Hospital-acquired anemia: prevalence, outcomes, and healthcare implications. J Hosp Med. 2013; 8(9):506-12.
[12] Tezcan B, Kosovalı BD, Can M, Demirbağ AE, Yavuz A, Mutlu NM. Incidence and predictors of hospital acquired anemia in COVID-19 ARDS patients hospitalized in intensive care unit. Transfus Apher Sci. 2025; 64(4):104173.
[13] Johnson ED, Schell JC, Rodgers GM. The D-dimer assay. Am J Hematol. 2019; 94(7):833-9.
[14] Chen W, Pan JY. Anatomical and Pathological Observation and Analysis of SARS and COVID-19: Microthrombosis Is the Main Cause of Death. Biol Proced Online. 2021; 23(1):4.
[15] Wadowski PP, Panzer B, Józkowicz A, Kopp CW, Gremmel T, Panzer S, Koppensteiner R. Microvascular Thrombosis as a Critical Factor in Severe COVID-19. Int J Mol Sci. 2023; 24(3):2492.
[16] Parra-Medina R, Herrera S, Mejia J. Systematic Review of Microthrombi in COVID-19 Autopsies. Acta Haematol. 2021; 144(5):476-83.
[17] Javorac J, Živanović D, Stojkov S, Miličić JĐ, Fradelos E, Savić N. COVID-19 associated pulmonary embolism with D-dimer values within the referent range: a case report and review of the literature. Eur Rev Med Pharmacol Sci. 2021; 25(24):7971-5.
[18] Hannoodee H, Khanam V, Taheri Abkouh D, Akyuz K, Kulairi ZI. Acute pulmonary embolism in a patient with a normal D-Dimer. Chest. 2022; 162(4):A1141.
[19] Achiron A, Gurevich M, Friedman N, Kaminski N, Mandel M. Blood transcriptional signatures of multiple sclerosis: unique gene expression of disease activity. Ann Neurol. 2004; 55(3):410-7.
[20] Gladkevich A, Kauffman HF, Korf J. Lymphocytes as a neural probe: potential for studying psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2004; 28(3):559-76.
[21] Tang Y, Nee AC, Lu A, Ran R, Sharp FR. Blood genomic expression profile for neuronal injury. J Cereb Blood Flow Metab. 2003; 23(3):310-9.
[22] Twine NC, Stover JA, Marshall B, Dukart G, Hidalgo M, Stadler W, Logan T, Dutcher J, Hudes G, Dorner AJ, Slonim DK, Trepicchio WL, Burczynski ME. Disease-associated expression profiles in peripheral blood mononuclear cells from patients with advanced renal cell carcinoma. Cancer Res. 2003; 63(18):6069-75.
[23] Burczynski ME, Twine NC, Dukart G, Marshall B, Hidalgo M, Stadler WM, Logan T, Dutcher J, Hudes G, Trepicchio WL, Strahs A, Immermann F, Slonim DK, Dorner AJ. Transcriptional profiles in peripheral blood mononuclear cells prognostic of clinical outcomes in patients with advanced renal cell carcinoma. Clin Cancer Res. 2005; 11(3):1181-9.
[24] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001; 25(4):402-8.
[25] Goni R, García P, Foissac S. The qPCR data statistical analysis. Integromics White Paper. 2009; 1-9.
[26] Tahaghoghi-Hajghorbani S, Zafari P, Masoumi E, Rajabinejad M, Jafari-Shakib R, Hasani B, Rafiei A. The role of dysregulated immune responses in COVID-19 pathogenesis. Virus Res. 2020; 290:198197.
[27] Takamura T, Honda M, Sakai Y, Ando H, Shimizu A, Ota T, Sakurai M, Misu H, Kurita S, Matsuzawa-Nagata N, Uchikata M, Nakamura S, Matoba R, Tanino M, Matsubara K, Kaneko S. Gene expression profiles in peripheral blood mononuclear cells reflect the pathophysiology of type 2 diabetes. Biochem Biophys Res Commun. 2007; 361(2):379-84.
[28] Komura T, Sakai Y, Harada K, Kawaguchi K, Takabatake H, Kitagawa H, Wada T, Honda M, Ohta T, Nakanuma Y, Kaneko S. Inflammatory features of pancreatic cancer highlighted by monocytes/macrophages and CD4+ T cells with clinical impact. Cancer Sci. 2015; 106(6):672-86.
[29] Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, Wang T, Zhang X, Chen H, Yu H, Zhang X, Zhang M, Wu S, Song J, Chen T, Han M, Li S, Luo X, Zhao J, Ning Q. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020; 130(5):2620-9.
[30] Shi Y, Wang Y, Shao C, Huang J, Gan J, Huang X, Bucci E, Piacentini M, Ippolito G, Melino G. COVID-19 infection: the perspectives on immune responses. Cell Death Differ. 2020; 27(5):1451-4.
[31] Ye Q, Wang B, Mao J. The pathogenesis and treatment of the 'Cytokine Storm' in COVID-19. J Infect. 2020; 80(6):607-13.
[32] Villalón-Letelier F, Brooks AG, Saunders PM, Londrigan SL, Reading PC. Host Cell Restriction Factors that Limit Influenza A Infection. Viruses. 2017; 9(12):376.
[33] Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R, Jordan TX, Oishi K, Panis M, Sachs D, Wang TT, Schwartz RE, Lim JK, Albrecht RA, tenOever BR. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell. 2020; 181(5):1036-1045.e9.
[34] Kim TS, Braciale TJ. Respiratory dendritic cell subsets differ in their capacity to support the induction of virus-specific cytotoxic CD8+ T cell responses. PLoS One. 2009; 4(1):e4204.
[35] Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223):497-506.
[36] Giamarellos-Bourboulis EJ, Netea MG, Rovina N, Akinosoglou K, Antoniadou A, Antonakos N, Damoraki G, Gkavogianni T, Adami ME, Katsaounou P, Ntaganou M, Kyriakopoulou M, Dimopoulos G, Koutsodimitropoulos I, Velissaris D, Koufargyris P, Karageorgos A, Katrini K, Lekakis V, Lupse M, Kotsaki A, Renieris G, Theodoulou D, Panou V, Koukaki E, Koulouris N, Gogos C, Koutsoukou A. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell Host Microbe. 2020; 27(6):992-1000.e3.
[37] Tan L, Wang Q, Zhang D, Ding J, Huang Q, Tang YQ, Wang Q, Miao H. Correction: Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Signal Transduct Target Ther. 2020; 5(1):61.
[38] Shouman S, El-Kholy N, Hussien AE, El-Derby AM, Magdy S, Abou-Shanab AM, Elmehrath AO, Abdelwaly A, Helal M, El-Badri N. SARS-CoV-2-associated lymphopenia: possible mechanisms and the role of CD147. Cell Commun Signal. 2024; 22(1):349.
[39] Zhen A, Krutzik SR, Levin BR, Kasparian S, Zack JA, Kitchen SG. CD4 ligation on human blood monocytes triggers macrophage differentiation and enhances HIV infection. J Virol. 2014; 88(17):9934-46.
[40] Kazazi F, Mathijs JM, Foley P, Cunningham AL. Variations in CD4 expression by human monocytes and macrophages and their relationships to infection with the human immunodeficiency virus. J Gen Virol. 1989; 70(10):2661-72.
[41] Biswas P, Mantelli B, Sica A, Malnati M, Panzeri C, Saccani A, Hasson H, Vecchi A, Saniabadi A, Lusso P, Lazzarin A, Beretta A. Expression of CD4 on human peripheral blood neutrophils. Blood. 2003; 101(11):4452-6.
[42] Malas MB, Naazie IN, Elsayed N, Mathlouthi A, Marmor R, Clary B. Thromboembolism risk of COVID-19 is high and associated with a higher risk of mortality: A systematic review and meta-analysis. EClinicalMedicine. 2020; 29:100639.
[43] Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020; 18(4):844-7.
[44] Ray P, Le Manach Y, Riou B, Houle TT. Statistical evaluation of a biomarker. Anesthesiology. 2010; 112(4):1023-40.