Biopolym. Cell. 2025; 41(1):3-12.
Reviews
Aspects of gene expression analysis in small–volume blood samples using the real–time PCR
1, 2Hlazunova O. D., 1Melnichuk N. S.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03143
  2. Educational and Scientific Center "Institute of Biology and Medicine" of Taras Shevchenko National University of Kyiv
    2, Akademika Hlushkova Ave., Kyiv, Ukraine, 03022

Abstract

Gene expression profiling of peripheral blood leukocytes is a valuable method for assessing disease–associated and drug–response related genes. Small–volume blood samples can be used for gene expression analysis in biomarker discovery, pre–clinical animal research for drug development, neonatal and pediatric studies, and therapeutic drug monitoring. However, the reduced RNA quantity and handling procedures of small–volume samples complicate gene expression analysis using real–time reverse transcription polymerase chain reaction. In this article, we systematize and compare RNA isolation and molecular genetic techniques to identify optimized strategies for gene expression analysis of small–volume blood samples and discuss gene expression studies in capillary blood samples.
Keywords: small–volume blood sample, RT–qPCR, gene expression, capillary blood

References

[1] Ramilo O, Allman W, Chung W, Mejias A, Ardura M, Glaser C, Wittkowski KM, Piqueras B, Banchereau J, Palucka AK, Chaussabel D. Gene expression patterns in blood leukocytes discriminate patients with acute infections. Blood. 2007; 109(5):2066-77.
[2] Palmer C, Diehn M, Alizadeh AA, Brown PO. Cell-type specific gene expression profiles of leukocytes in human peripheral blood. BMC Genomics. 2006; 7:115.
[3] Gerashchenko GV, Vagina IM, Vagin YuV, Tkachuk ZYu, Kashuba VI. Expression pattern of immune- and cancer-associated genes in peripheral blood of mice bearing melanoma cells. Biopolym Cell. 2019; 35(4):313-20.
[4] Brentani RR, Carraro DM, Verjovski-Almeida S, Reis EM, Neves EJ, de Souza SJ, Carvalho AF, Brentani H, Reis LF. Gene expression arrays in cancer research: methods and applications. Crit Rev Oncol Hematol. 2005; 54(2):95-105.
[5] Rajeevan MS, Vernon SD, Taysavang N, Unger ER. Validation of array-based gene expression profiles by real-time (kinetic) RT-PCR. J Mol Diagn. 2001; 3(1):26-31.
[6] Ma J, Tran G, Wan AMD, Young EWK, Kumacheva E, Iscove NN, Zandstra PW. Microdroplet-based one-step RT-PCR for ultrahigh throughput single-cell multiplex gene expression analysis and rare cell detection. Sci Rep. 2021; 11(1):6777.
[7] VanGuilder HD, Vrana KE, Freeman WM. Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques. 2008; 44(5):619-26.
[8] Bumgarner R. Overview of DNA microarrays: types, applications, and their future. Curr Protoc Mol Biol. 2013; 101:22.1.1–22.1.11.
[9] Fryer RM, Randall J, Yoshida T, Hsiao LL, Blumenstock J, Jensen KE, Dimofte T, Jensen RV, Gullans SR. Global analysis of gene expression: methods, interpretation, and pitfalls. Exp Nephrol. 2002; 10(2):64-74.
[10] Kalikiri MKR, Manjunath HS, Vempalli FR, Mathew LS, Liu L, Wang L, Wang G, Wang K, Soloviov O, Lorenz S, Tomei S. Technical assessment of different extraction methods and transcriptome profiling of RNA isolated from small volumes of blood. Sci Rep. 2023; 13(1):3598.
[11] Knitza J, Tascilar K, Vuillerme N, Eimer E, Matusewicz P, Corte G, Schuster L, Aubourg T, Bendzuck G, Korinth M, Elling-Audersch C, Kleyer A, Boeltz S, Hueber AJ, Krönke G, Schett G, Simon D. Accuracy and tolerability of self-sampling of capillary blood for analysis of inflammation and autoantibodies in rheumatoid arthritis patients-results from a randomized controlled trial. Arthritis Res Ther. 2022; 24(1):125.
[12] Zwart TC, Metscher E, van der Boog PJM, Swen JJ, de Fijter JW, Guchelaar HJ, de Vries APJ, Moes DJAR. Volumetric microsampling for simultaneous remote immunosuppressant and kidney function monitoring in outpatient kidney transplant recipients. Br J Clin Pharmacol. 2022; 88(11):4854-69.
[13] Brandsma J, Chenoweth JG, Gregory MK, Krishnan S, Blair PW, Striegel DA, Mehta R, Schully KL, Dumler JS, Sikorski CCS, O'Connor K, Reichert-Scrivner SA, Paguirigan CM, Uyehara CFT, Ngauy CV, Myers CA, Clark DV. Assessing the use of a micro-sampling device for measuring blood protein levels in healthy subjects and COVID-19 patients. PLoS One. 2022; 17(8):e0272572.
[14] Krawiec JA, Chen H, Alom-Ruiz S, Jaye M. Modified PAXgene method allows for isolation of high-integrity total RNA from microlitre volumes of mouse whole blood. Lab Anim. 2009; 43(4):394-8.
[15] Rinchai D, Anguiano E, Nguyen P, Chaussabel D. Finger stick blood collection for gene expression profiling and storage of tempus blood RNA tubes. F1000Res. 2016; 5:1385.
[16] Robison EH, Mondala TS, Williams AR, Head SR, Salomon DR, Kurian SM. Whole genome transcript profiling from fingerstick blood samples: a comparison and feasibility study. BMC Genomics. 2009; 10:617.
[17] Speake C, Whalen E, Gersuk VH, Chaussabel D, Odegard JM, Greenbaum CJ. Longitudinal monitoring of gene expression in ultra-low-volume blood samples self-collected at home. Clin Exp Immunol. 2017; 188(2):226-33.
[18] Syed Ahamed Kabeer B, Tomei S, Mattei V, Brummaier T, McGready R, Nosten F, Chaussabel D. A protocol for extraction of total RNA from finger stick whole blood samples preserved with TempusTM solution. F1000Res. 2018; 7:1739.
[19] Wehmeier UF, Hilberg T. Capillary earlobe blood may be used for RNA isolation, gene expression assays and microRNA quantification. Mol Med Rep. 2014; 9(1):211-6.
[20] Carrol ED, Salway F, Pepper SD, Saunders E, Mankhambo LA, Ollier WE, Hart CA, Day P. Successful downstream application of the Paxgene Blood RNA system from small blood samples in paediatric patients for quantitative PCR analysis. BMC Immunol. 2007; 8:20.
[21] Mathew R, Toufiq M, Mattei V, Al Hashmi M, Shobha Manjunath H, Syed Ahamed Kabeer B, Calzone R, Cugno C, Chaussabel D, Deola S, Tomei S. Influence of storage conditions of small volumes of blood on immune transcriptomic profiles. BMC Res Notes. 2020; 13(1):150.
[22] Farivar S, Ghazimoradi MH. DNA and RNA extraction from low amount of blood volume. Forensic Sci Int. 2019; 303:109931.
[23] Toni LS, Garcia AM, Jeffrey DA, Jiang X, Stauffer BL, Miyamoto SD, Sucharov CC. Optimization of phenol-chloroform RNA extraction. MethodsX. 2018; 5:599-608.
[24] Fricano MM, Ditewig AC, Jung PM, Liguori MJ, Blomme EA, Yang Y. Global transcriptomic profiling using small volumes of whole blood: a cost-effective method for translational genomic biomarker identification in small animals. Int J Mol Sci. 2011; 12(4):2502-17.
[25] Bustin SA, Nolan T. Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J Biomol Tech. 2004; 15(3):155-66.
[26] Vermeulen J, De Preter K, Lefever S, Nuytens J, De Vloed F, Derveaux S, Hellemans J, Speleman F, Vandesompele J. Measurable impact of RNA quality on gene expression results from quantitative PCR. Nucleic Acids Res. 2011; 39(9):e63.
[27] Hashemipetroudi SH, Nematzadeh G, Ahmadian G, Yamchi A, Kuhlmann M. Assessment of DNA Contamination in RNA Samples Based on Ribosomal DNA. J Vis Exp. 2018; (131):55451.
[28] Gautam A. DNA and RNA Isolation Techniques for Non-Experts. Cham, Swizerland: Springer International Publishing, 2022. - 203 p.
[29] Smale G, Sasse J. RNA isolation from cartilage using density gradient centrifugation in cesium trifluoroacetate: an RNA preparation technique effective in the presence of high proteoglycan content. Anal Biochem. 1992; 203(2):352-6.
[30] Meyer A, Paroni F, Günther K, Dharmadhikari G, Ahrens W, Kelm S, Maedler K. Evaluation of Existing Methods for Human Blood mRNA Isolation and Analysis for Large Studies. PLoS One. 2016; 11(8):e0161778.
[31] Kube DM, Savci-Heijink CD, Lamblin AF, Kosari F, Vasmatzis G, Cheville JC, Connelly DP, Klee GG. Optimization of laser capture microdissection and RNA amplification for gene expression profiling of prostate cancer. BMC Mol Biol. 2007; 8:25.
[32] Korneev KV. [Mouse Models of Sepsis and Septic Shock]. Mol Biol (Mosk). 2019; 53(5):799-814.
[33] Portelli C, Seria E, Attard R, Barzine M, Esquinas-Roman EM, Borg Carbott F, Cassar K, Vella M, Scicluna BP, Ebejer JP, Farrugia R, Bezzina Wettinger S. Isolating high-quality RNA for RNA-Seq from 10-year-old blood samples. Sci Rep. 2024; 14(1):30716.
[34] Nazarov PV, Muller A, Kaoma T, Nicot N, Maximo C, Birembaut P, Tran NL, Dittmar G, Vallar L. RNA sequencing and transcriptome arrays analyses show opposing results for alternative splicing in patient derived samples. BMC Genomics. 2017; 18(1):443.
[35] Uellendahl-Werth F, Wolfien M, Franke A, Wolkenhauer O, Ellinghaus D. A benchmark of hemoglobin blocking during library preparation for mRNA-Sequencing of human blood samples. Sci Rep. 2020; 10(1):5630.
[36] Ståhlberg A, Håkansson J, Xian X, Semb H, Kubista M. Properties of the reverse transcription reaction in mRNA quantification. Clin Chem. 2004; 50(3):509-15.
[37] Jalali M, Zaborowska J, Jalali M. Basic Science Methods for Clinical Researchers. Cambridge, Massachusetts: Academic Press, 2017. - 382 p.
[38] Baynes J, Dominiczak M. Medical biochemistry. Amsterdam, Netherlands: Elsevier Health Sciences, 2022. - 744 p.
[39] Sanders R, Mason DJ, Foy CA, Huggett JF. Considerations for accurate gene expression measurement by reverse transcription quantitative PCR when analysing clinical samples. Anal Bioanal Chem. 2014; 406(26):6471-83.
[40] Basu C. PCR Primer Design. Methods in molecular biology. Clifton, New Jersey: Humana Press, 2022. - 289 p.
[41] Malboeuf CM, Isaacs SJ, Tran NH, Kim B. Thermal effects on reverse transcription: improvement of accuracy and processivity in cDNA synthesis. Biotechniques. 2001; 30(5):1074-8, 1080, 1082.
[42] Navarro E, Serrano-Heras G, Castaño MJ, Solera J. Real-time PCR detection chemistry. Clin Chim Acta. 2015; 439:231-50.
[43] Hawkins S, Guest P. Multiplex Biomarker Techniques. Methods in Molecular Biology. Clifton, New Jersey: Humana Press, 2017. - 332 p.
[44] Peters IR, Helps CR, Hall EJ, Day MJ. Real-time RT-PCR: considerations for efficient and sensitive assay design. J Immunol Methods. 2004; 286(1-2):203-17.
[45] Buh Gasparic M, Cankar K, Zel J, Gruden K. Comparison of different real-time PCR chemistries and their suitability for detection and quantification of genetically modified organisms. BMC Biotechnol. 2008; 8:26.
[46] Bustin SA. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol. 2000; 25(2):169-93.
[47] Krleza JL, Dorotic A, Grzunov A, Maradin M. Croatian Society of Medical Biochemistry and Laboratory Medicine. Capillary blood sampling: national recommendations on behalf of the Croatian Society of Medical Biochemistry and Laboratory Medicine. Biochem Med (Zagreb). 2015; 25(3):335-58.
[48] Fontaine E, Saez C. Capillary blood stability and analytical accuracy of 12 analytes stored in Microtainers. Pract Lab Med. 2023; 36:e00325.
[49] Wittbrodt MT, Espinoza S, Millard-Stafford ML. Biological variation of plasma osmolality obtained with capillary versus venous blood. Clin Chem Lab Med. 2015; 53(10):1613-9.
[50] Maroto-García J, Deza S, Fuentes-Bullejos P, Fernández-Tomás P, Martínez-Espartosa D, Marcos-Jubilar M, Varo N, González Á. Analysis of common biomarkers in capillary blood in routine clinical laboratory. Preanalytical and analytical comparison with venous blood. Diagnosis (Berl). 2023; 10(3):281-97.
[51] Gorret AM, Muhindo R, Baguma E, Ntaro M, Mulogo EM, Deutsch-Feldman M, Juliano JJ, Nyehangane D, Boyce RM. Comparison of Capillary Versus Venous Blood for the Diagnosis of Plasmodium falciparum Malaria Using Rapid Diagnostic Tests. J Infect Dis. 2021; 224(1):109-113.
[52] Goodrum JM, Lewis LA, Fedoruk MN, Eichner D, Miller GD. Feasibility of microvolumetric capillary whole blood collections for usage in Athlete Biological Passport analysis. Drug Test Anal. 2022; 14(7):1291-9.
[53] Hall J. Guyton and Hall Textbook of Medical Physiology. 13th ed. London, England: W B Saunders, 2024. - 1168 p.
[54] Kupke IR, Kather B, Zeugner S. On the composition of capillary and venous blood serum. Clin Chim Acta. 1981; 112(2):177-85.
[55] Wurzinger S, Bratu M, Wonisch W, Wintersteiger R, Halwachs-Baumann G, Porta S. Interdependency of the oxidizability of lipoproteins and peroxidase activity with base excess, HCO3, pH and magnesium in human venous and capillary blood. Life Sci. 2006; 78(15):1754-9.
[56] Colagiuri S, Sandbaek A, Carstensen B, Christensen J, Glumer C, Lauritzen T, Borch-Johnsen K. Comparability of venous and capillary glucose measurements in blood. Diabet Med. 2003; 20(11):953-6.
[57] Schalk E, Heim MU, Koenigsmann M, Jentsch-Ullrich K. Use of capillary blood count parameters in adults. Vox Sang. 2007; 93(4):348-53.
[58] Daae LN, Hallerud M, Halvorsen S. A comparison between haematological parameters in 'capillary' and venous blood samples from hospitalized children aged 3 months to 14 years. Scand J Clin Lab Invest. 1991; 51(7):651-4.
[59] Die JV, Obrero Á, González-Verdejo CI, Román B. Characterization of the 3':5' ratio for reliable determination of RNA quality. Anal Biochem. 2011; 419(2):336-8.