Biopolym. Cell. 2024; 40(2):109-117.
Molecular Biomedicine
Production of functional antibodies from hyperimmune duck eggs for neutralization of new coronavirus SARS CoV-2
1Melnychuk M. D., 2Sereda O. V., 3Yu W., 3Spyrydonov V. G.
  1. Vinnytsia National Agrarian University
    3, Sonyachna Str., Vinnytsia, Ukraine, 21008
  2. Research Station of Medicinal Plants, IAE NAAS of Ukraine
    16A, Pokrovska Str., Lubny distr., Berezotocha, Poltava reg., Ukraine, 61016
  3. Shanghai Gene Era Bio-Science, Co, Ltd.
    211, Huancheng East Road, Fengxian District, Shanghai, China, 201400

Abstract

Aim. To develop a technology for producing coronavirus-neutralizing antibodies in duck eggs (Anas platyrhynchos) immunized with a recombinant fragment of the S-antigen of the SARS CoV-2 virus, and to analyze the possibility of their use as an active substance in the development of local inhalation drugs to prevent the aerosol spread of respiratory viral infections, including a new coronavirus. Methods. Recombinant antigen production in the yeast expression system, production of antibodies from duck eggs, affinity purification, ELISA. Results. We describe an efficient method for obtaining functional yolk antibodies (IgY) from the hyperimmune duck eggs. We have shown that the average yield of total yolk antibodies from duck eggs is 0.25±0.05 grams per yolk. The obtained antibodies showed the virus neutralization activity at 70.6% inhibition (PI) in blocking ELISA, which was comparable to the human serum antibodies after vaccination with coronavirus vaccine PI at 87% (p≤0.05). Conclusions. The results obtained indicate that S-specific yolk antibodies can be used as an active substance for the development of topical inhalation drugs that prevent coronavirus infection.
Keywords: COVID-19, SARS CoV-2, yolk immunoglobulin, virus neutralizing antibodies, blocking ELISA, coronavirus vaccine

References

[1] Zhang H, Yang Z, Xiang J, Cui Z, Liu J, Liu C. Intranasal administration of SARS-CoV-2 neutralizing human antibody prevents infection in mice. bioRxiv [Preprint]. 2020.
[2] Paul WE. Fundamental Immunology. – 'Lippincott Williams & Wilkins', 2012; 7th Ed., 1304p., ISBN: 9781451117837.
[3] Chen WH, Hotez PJ, Bottazzi ME. Potential for developing a SARS-CoV receptor-binding domain (RBD) recombinant protein as a heterologous human vaccine against coronavirus infectious disease (COVID)-19. Hum Vaccin Immunother. 2020; 16(6):1239-42.
[4] Schade R, Calzado EG, Sarmiento R, Chacana PA, Porankiewicz-Asplund J, Terzolo HR. Chicken egg yolk antibodies (IgY-technology): a review of progress in production and use in research and human and veterinary medicine. Altern Lab Anim. 2005; 33(2):129-54.
[5] Pérez de la Lastra JM, Baca-González V, Asensio-Calavia P, González-Acosta S, Morales-delaNuez A. Can Immunization of Hens Provide Oral-Based Therapeutics against COVID-19? Vaccines (Basel). 2020; 8(3):486.
[6] Soulard A, Lechler T, Spiridonov V, Shevchenko A, Shevchenko A, Li R, Winsor B. Saccharomyces cerevisiae Bzz1p is implicated with type I myosins in actin patch polarization and is able to recruit actin-polymerizing machinery in vitro. Mol Cell Biol. 2002; 22(22):7889-906.
[7] Dai L, Gao GF. Viral targets for vaccines against COVID-19. Nat Rev Immunol. 2021; 21(2):73-82.
[8] Wild D. The Immunoassay Handbook: Theory and Applications of Ligand Binding, ELISA and Related Techniques. - 'Elsevier Science & Technology', 2013; 4th Ed., 1036p., ISBN: 9780080970370.
[9] Polson A, von Wechmar MB, van Regenmortel MH. Isolation of viral IgY antibodies from yolks of immunized hens. Immunol Commun. 1980; 9(5):475-93.
[10] Spyrydonov V, Melnychuk M. Coronavirus S antigen as a marker of effective vaccination. Dopov Nac akad nauk Ukr. 2021; 3:96-103.
[11] Fischer JC, Zänker K, van Griensven M, Schneider M, Kindgen-Milles D, Knoefel WT, Lichtenberg A, Tamaskovics B, Djiepmo-Njanang FJ, Budach W, Corradini S, Ganswindt U, Häussinger D, Feldt T, Schelzig H, Bojar H, Peiper M, Bölke E, Haussmann J, Matuschek C. The role of passive immunization in the age of SARS-CoV-2: an update. Eur J Med Res. 2020; 25(1):16.
[12] Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, Wang F, Li D, Yang M, Xing L, Wei J, Xiao H, Yang Y, Qu J, Qing L, Chen L, Xu Z, Peng L, Li Y, Zheng H, Chen F, Huang K, Jiang Y, Liu D, Zhang Z, Liu Y, Liu L. Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. JAMA. 2020; 323(16):1582-9.
[13] Tanne JH. Covid-19: FDA approves use of convalescent plasma to treat critically ill patients. BMJ. 2020; 368:m1256.
[14] Weisblum Y, Schmidt F, Zhang F, DaSilva J, Poston D, Lorenzi JCC, Muecksch F, Rutkowska M, Hoffmann HH, Michailidis E, Gaebler C, Agudelo M, Cho A, Wang Z, Gazumyan A, Cipolla M, Luchsinger L, Hillyer CD, Caskey M, Robbiani DF, Rice CM, Nussenzweig MC, Hatziioannou T, Bieniasz PD. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. bioRxiv [Preprint]. 2020.
[15] Spyrydonov V, Pihida D, Sereda A, Likhanov A, Yu W. Production and evaluation of egg derived hot start antibodies. Electron J Biotechnol. 2020; 44:6-13.
[16] Fu CY, Huang H, Wang XM, Liu YG, Wang ZG, Cui SJ, Gao HL, Li Z, Li JP, Kong XG. Preparation and evaluation of anti-SARS coronavirus IgY from yolks of immunized SPF chickens. J Virol Methods. 2006; 133(1):112-5.
[17] Higgins DA, Warr GW. Duck immunoglobulins: structure, functions and molecular genetics. Avian Pathol. 1993; 22(2):211-36.
[18] Higgins DA, Cromie RL, Liu SS, Magor KE, Warr GW. Purification of duck immunoglobulins: an evaluation of protein A and protein G affinity chromatography. Vet Immunol Immunopathol. 1995; 44(2):169-80.
[19] Ru Z, Zhang Y, Wu J, Huang H, Liang Y, Yang X, Wu J, Lou J. Comparison of the SARS-CoV-2 Surrogate Virus Neutralization Test (sVNT) Assay and Direct Binding ELISA (S-IgG) with the Cytopathic Effect Assay (CPE) in Analyzing the Neutralization Antibody of Vaccination People. J Clin Immunol Immunother. 2021; 7(1):1-6.
[20] Artman C, Brumfield KD, Khanna S, Goepp J. Avian antibodies (IgY) targeting spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inhibit receptor binding and viral replication. PLoS One. 2021; 16(5):e0252399.