Biopolym. Cell. 2024; 40(2):83-95.
The influence of metal nanoparticles on plants
1Voloshyna I. M., 1Netiaha Yu. M., 1Nechaiuk Ya. V., 1Khomenko V. G., 2Shkotova L. V.
  1. Kyiv National University of Technologies and Design
    2, Mala Shyianovska (Nemirovich-Danchenko) Str., Kyiv, Ukraine, 01011
  2. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03143


The use of metal nanoparticles in agriculture opens the prospects for increasing the efficien-cy and sustainability of agricultural production. This technology makes it possible to apply miniature metal particles, such as nanosilver, nanomanganese, nanocopper, nanozinc, etc., with maximum precision and targeting. The prospects of using metal nanoparticles include such aspects as increasing soil fertility, protecting plants from pests and diseases, effective water management, enhancement of the nutritional quality of plants, improvement of seed and germination, sensor technologies for monitoring, and reducing negative environmental impact. With the need to ensure safety and take into account the environmental impact, the use of metal nanoparticles has the potential to transform agriculture, ensuring sustainable production growth and reducing its environmental footprint.
Keywords: agriculture, nanotechnology, nanoparticles, nanometals, microorganisms, green biosynthesis


[1] Roy A, Bulut O, Some S, Mandal AK, Yilmaz MD. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv. 2019; 9(5):2673-702.
[2] Schmidt SB, Eisenhut M, Schneider A. Chloroplast Transition Metal Regulation for Efficient Photosynthesis. Trends Plant Sci. 2020; 25(8):817-28.
[3] Adeyemi JO, Oriola AO, Onwudiwe DC, Oyedeji AO. Plant Extracts Mediated Metal-Based Nanoparticles: Synthesis and Biological Applications. Biomolecules. 2022; 12(5):627.
[4] Slepička P, Slepičková Kasálková N, Siegel J, Kolská Z, Švorčík V. Methods of Gold and Silver Nanoparticles Preparation. Materials (Basel). 2019; 13(1):1.
[5] Jeevanandam J, Kiew SF, Boakye-Ansah S, Lau SY, Barhoum A, Danquah MK, Rodrigues J. Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. Nanoscale. 2022; 14(7):2534-71.
[6] Wibowo A, Tajalla GUN, Marsudi MA, Cooper G, Asri LATW, Liu F, Ardy H, Bartolo PJDS. Green Synthesis of Silver Nanoparticles Using Extract of Cilembu Sweet Potatoes (Ipomoea batatas L var. Rancing) as Potential Filler for 3D Printed Electroactive and Anti-Infection Scaffolds. Molecules. 2021; 26(7):2042.
[7] Singh P, Mijakovic I. Green synthesis and antibacterial applications of gold and silver nanoparticles from Ligustrum vulgare berries. Sci Rep. 2022; 12(1):7902.
[8] Tariq M, Mohammad KN, Ahmed B, Siddiqui MA, Lee J. Biological Synthesis of Silver Nanoparticles and Prospects in Plant Disease Management. Molecules. 2022; 27(15):4754.
[9] Elmer WH, White JC. The Use of Metallic Oxide Nanoparticles to Enhance Growth of Tomatoes and Eggplants in Disease Infested Soil or Soilless Medium. Environ Sci Nano. 2016; 3:1072-9.
[10] Worrall EA, Hamid A, Mody KT, Mitter N, Pappu HR. Nanotechnology for Plant Disease Management. Agronomy. 2018; 8:285.
[11] Mikhailov OV, Mikhailova EO. Elemental Silver Nanoparticles: Biosynthesis and Bio Applications. Materials (Basel). 2019; 12(19):3177.
[12] Rasheed A, Li H, Tahir MM, Mahmood A, Nawaz M, Shah AN, Aslam MT, Negm S, Moustafa M, Hassan MU, Wu Z. The role of nanoparticles in plant biochemical, physiological, and molecular responses under drought stress: A review. Front Plant Sci. 2022; 13:976179.
[13] Al-Otibi F, Albulayhid LS, Alharbi RI, Almohsen AA, AlShowiman GM. Biological Activity of Biosynthesized Silver Nanoaggregates Prepared from the Aqueous Extract of Cymbopogon citratus against Candida spp. Nanomaterials (Basel). 2023; 13(15):2198.
[14] Khatoon N, Sharma Y, Sardar M, Manzoor N. Mode of action and anti-Candida activity of Artemisia annua mediated-synthesized silver nanoparticles. J Mycol Med. 2019; 29(3):201-9.
[15] Żarowska B, Koźlecki T, Piegza M, Jaros-Koźlecka K, Robak M. New Look on Antifungal Activity of Silver Nanoparticles (AgNPs). Pol J Microbiol. 2019; 68(4):515-25.
[16] Bruna T, Maldonado-Bravo F, Jara P, Caro N. Silver Nanoparticles and Their Antibacterial Applications. Int J Mol Sci. 2021; 22(13):7202.
[17] Malik AQ, Mir TUG, Kumar D, Mir IA, Rashid A, Ayoub M, Shukla S. A review on the green synthesis of nanoparticles, their biological applications, and photocatalytic efficiency against environmental toxins. Environ Sci Pollut Res Int. 2023; 30(27):69796-823.
[18] Ibrahim E, Zhang M, Zhang Y, Hossain A, Qiu W, Chen Y, Wang Y, Wu W, Sun G, Li B. Green-Synthesization of Silver Nanoparticles Using Endophytic Bacteria Isolated from Garlic and Its Antifungal Activity against Wheat Fusarium Head Blight Pathogen Fusarium Graminearum. Nanomaterials (Basel). 2020; 10(2):219.
[19] Naganthran A, Verasoundarapandian G, Khalid FE, Masarudin MJ, Zulkharnain A, Nawawi NM, Karim M, Che Abdullah CA, Ahmad SA. Synthesis, Characterization and Biomedical Application of Silver Nanoparticles. Materials (Basel). 2022; 15(2):427.
[20] Nazemi Salman B, Mohammadi Gheidari M, Yazdi Nejad A, Zeighami H, Mohammadi A, Basir Shabestari S. Antimicrobial Activity of Silver Nanoparticles Synthesized by the Green Method Using Rhus coriaria L. Extract Against Oral Pathogenic Microorganisms. Med J Islam Repub Iran. 2022; 36:154.
[21] Krupa-Małkiewicz M, Oszmiański J, Lachowicz S, Szczepanek M, Jaśkiewicz B, Pachnowska K, Ochmian I. Effect of nanosilver (nAg) on disinfection, growth, and chemical composition of young barley leaves under in vitro conditions. J Integr Agric. 2019; 18(8):1871-81.
[22] Sharma B, Singh I, Bajar S, Gupta S, Gautam H, Kumar P. Biogenic Silver Nanoparticles: Evaluation of Their Biological and Catalytic Potential. Indian J Microbiol. 2020; 60(4):468-74.
[23] Mirzaie A, Badmasti F, Dibah H, Hajrasouliha S, Yousefi F, Andalibi R, Kashtali AB, Rezaei AH, Bakhtiatri R. Phyto-Fabrication of Silver Nanoparticles Using Typha azerbaijanensis Aerial Part and Root Extracts. Iran J Public Health. 2022; 51(5):1097-106.
[24] Mehmood A, Murtaza G. Application of SNPs to improve yield of Pisum sativum L. (pea). IET Nanobiotechnol. 2017; 11(4):390-4.
[25] Arsene MMJ, Viktorovna PI, Alla M, Mariya M, Davares AKL, Carime BZ, Anatolievna GO, Vyacheslavovna YN, Vladimirovna ZA, Andreevna SL, Aleksandrovna VE, Alekseevich BL, Nikolaïevna BM, Parfait K, Andrey V. Antimicrobial activity of phytofabricated silver nanoparticles using Carica papaya L. against Gram-negative bacteria. Vet World. 2023; 16(6):1301-11.
[26] Lashin I, Fouda A, Gobouri AA, Azab E, Mohammedsaleh ZM, Makharita RR. Antimicrobial and In Vitro Cytotoxic Efficacy of Biogenic Silver Nanoparticles (Ag-NPs) Fabricated by Callus Extract of Solanum incanum L. Biomolecules. 2021; 11(3):341.
[27] Xia QH, Ma YJ, Wang JW. Biosynthesis of Silver Nanoparticles Using Taxus yunnanensis Callus and Their Antibacterial Activity and Cytotoxicity in Human Cancer Cells. Nanomaterials (Basel). 2016; 6(9):160.
[28] Rasool S, Tayyeb A, Raza MA, Ashfaq H, Perveen S, Kanwal Z, Riaz S, Naseem S, Abbas N, Ahmad N, Alomar SY. Citrullus colocynthis-Mediated Green Synthesis of Silver Nanoparticles and Their Antiproliferative Action against Breast Cancer Cells and Bactericidal Roles against Human Pathogens. Nanomaterials (Basel). 2022; 12(21):3781.
[29] Murei A, Pillay K, Govender P, Thovhogi N, Gitari WM, Samie A. Synthesis, Characterization and In Vitro Antibacterial Evaluation of Pyrenacantha grandiflora Conjugated Silver Nanoparticles. Nanomaterials (Basel). 2021; 11(6):1568.
[30] Ferdous Z, Nemmar A. Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. Int J Mol Sci. 2020; 21(7):2375.
[31] Elemike EE, Uzoh IM, Onwudiwe DC, Babalola OO. The Role of Nanotechnology in the Fortification of Plant Nutrients and Improvement of Crop Production. Appl Sci. 2019; 9(3):499.
[32] Schmidt SB, Husted S. The Biochemical Properties of Manganese in Plants. Plants (Basel). 2019; 8(10):381.
[33] Souri M, Hoseinpour V, Shakeri A, Ghaemi N. Optimisation of green synthesis of MnO nanoparticles via utilising response surface methodology. IET Nanobiotechnol. 2018; 12(6):822-7.
[34] Guo C, Ma H, Zhang Q, Li M, Jiang H, Chen C, Wang S, Min D. Nano MnO2 Radially Grown on Lignin-Based Carbon Fiber by One-Step Solution Reaction for Supercapacitors with High Performance. Nanomaterials (Basel). 2020; 10(3):594.
[35] Saod WM, Hamid LL, Alaallah NJ, Ramizy A. Biosynthesis and antibacterial activity of manganese oxide nanoparticles prepared by green tea extract. Biotechnol Rep (Amst). 2022; 34:e00729.
[36] Kolbert Z, Szőllősi R, Rónavári A, Molnár Á. Nanoforms of essential metals: from hormetic phytoeffects to agricultural potential. J Exp Bot. 2022; 73(6):1825-40.
[37] Noman M, Ahmed T, Ijaz U, Shahid M, Nazir MM, Azizullah, White JC, Li D, Song F. Bio-Functionalized Manganese Nanoparticles Suppress Fusarium Wilt in Watermelon (Citrullus lanatus L.) by Infection Disruption, Host Defense Response Potentiation, and Soil Microbial Community Modulation. Small. 2023; 19(2):e2205687.
[38] Hoseinpour V, Ghaemi N. Green synthesis of manganese nanoparticles: Applications and future perspective-A review. J Photochem Photobiol B. 2018; 189:234-43.
[39] Zhang X, Sathiyaseelan A, Naveen KV, Lu Y, Wang MH. Research progress in green synthesis of manganese and manganese oxide nanoparticles in biomedical and environmental applications - A review. Chemosphere. 2023; 337:139312.
[40] Zerfa C, Christie-Oleza JA, Soyer OS. Manganese Oxide Biomineralization Provides Protection against Nitrite Toxicity in a Cell-Density-Dependent Manner. Appl Environ Microbiol. 2019; 85(2):e02129-18.
[41] Nagra U, Shabbir M, Zaman M, Mahmood A, Barkat K. Review on Methodologies Used in the Synthesis of Metal Nanoparticles: Significance of Phytosynthesis Using Plant Extract as an Emerging Tool. Curr Pharm Des. 2020; 26(40):5188-204.
[42] Kasote DM, Lee JHJ, Jayaprakasha GK, Patil BS. Manganese Oxide Nanoparticles as Safer Seed Priming Agent to Improve Chlorophyll and Antioxidant Profiles in Watermelon Seedlings. Nanomaterials (Basel). 2021; 11(4):1016.
[43] Li PJ, Liang JY, Su DL, Huang Y, Pan JJ, Peng MF, Li GY, Shan Y. Green and efficient biosynthesis of pectin-based copper nanoparticles and their antimicrobial activities. Bioprocess Biosyst Eng. 2020; 43(11):2017-26.
[44] Rabiee N, Bagherzadeh M, Kiani M, Ghadiri AM, Etessamifar F, Jaberizadeh AH, Shakeri A. Biosynthesis of Copper Oxide Nanoparticles with Potential Biomedical Applications. Int J Nanomedicine. 2020; 15:3983-99.
[45] Peddi P, Ptsrk PR, Rani NU, Tulasi SL. Green synthesis, characterization, antioxidant, antibacterial, and photocatalytic activity of Suaeda maritima (L.) Dumort aqueous extract-mediated copper oxide nanoparticles. J Genet Eng Biotechnol. 2021; 19(1):131.
[46] Atri A, Echabaane M, Bouzidi A, Harabi I, Soucase BM, Ben Chaâbane R. Green synthesis of copper oxide nanoparticles using Ephedra Alata plant extract and a study of their antifungal, antibacterial activity and photocatalytic performance under sunlight. Heliyon. 2023; 9(2):e13484.
[47] Sathiyavimal S, Vasantharaj S, Kaliannan T, Pugazhendhi A. Eco-biocompatibility of chitosan coated biosynthesized copper oxide nanocomposite for enhanced industrial (Azo) dye removal from aqueous solution and antibacterial properties. Carbohydr Polym. 2020; 241:116243.
[48] Tortella G, Rubilar O, Fincheira P, Pieretti JC, Duran P, Lourenço IM, Seabra AB. Bactericidal and Virucidal Activities of Biogenic Metal-Based Nanoparticles: Advances and Perspectives. Antibiotics (Basel). 2021; 10(7):783.
[49] Noor S, Shah Z, Javed A, Ali A, Hussain SB, Zafar S, Ali H, Muhammad SA. A fungal based synthesis method for copper nanoparticles with the determination of anticancer, antidiabetic and antibacterial activities. J Microbiol Methods. 2020; 174:1-13.
[50] Nagajyothi PC, Muthuraman P, Sreekanth TVM, Kim DH, Shim J. Green synthesis: in-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells. Arab J Chem. 2017; 10:215-25.
[51] Pradhan S, Patra P, Mitra S, Dey KK, Basu S, Chandra S, Palit P, Goswami A. Copper nanoparticle (CuNP) nanochain arrays with a reduced toxicity response: a biophysical and biochemical outlook on Vigna radiata. J Agric Food Chem. 2015; 63(10):2606-17.
[52] Ravet K, Pilon M. Copper and iron homeostasis in plants: the challenges of oxidative stress. Antioxid Redox Signal. 2013; 19(9):919-32.
[53] Singh A, Singh NB, Hussain I, Singh H. Effect of biologically synthesized copper oxide nanoparticles on metabolism and antioxidant activity to the crop plants Solanum lycopersicum and Brassica oleracea var. botrytis. J Biotechnol. 2017; 262:11-27.
[54] Faraz A, Faizan M, D Rajput V, Minkina T, Hayat S, Faisal M, Alatar AA, Abdel-Salam EM. CuO Nanoparticle-Mediated Seed Priming Improves Physio-Biochemical and Enzymatic Activities of Brassica juncea. Plants (Basel). 2023; 12(4):803.
[55] Giannousi K, Avramidis I, Dendrinou-Samara C. Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv. 2013; 3:21743-52.
[56] Das PE, Abu-Yousef IA, Majdalawieh AF, Narasimhan S, Poltronieri P. Green Synthesis of Encapsulated Copper Nanoparticles Using a Hydroalcoholic Extract of Moringa oleifera Leaves and Assessment of Their Antioxidant and Antimicrobial Activities. Molecules. 2020; 25(3):555.
[57] Elmer W, White JC. The Future of Nanotechnology in Plant Pathology. Annu Rev Phytopathol. 2018; 56:111-33.
[58] Vincent J, Lau KS, Evyan YC, Chin SX, Sillanpää M, Chia CH. Biogenic Synthesis of Copper-Based Nanomaterials Using Plant Extracts and Their Applications: Current and Future Directions. Nanomaterials (Basel). 2022; 12(19):3312.
[59] Cruz-Luna AR, Cruz-Martínez H, Vásquez-López A, Medina DI. Metal Nanoparticles as Novel Antifungal Agents for Sustainable Agriculture: Current Advances and Future Directions. J Fungi (Basel). 2021; 7(12):1033.
[60] Ibarra-Laclette E, Blaz J, Pérez-Torres CA, Villafán E, Lamelas A, Rosas-Saito G, Ibarra-Juárez LA, García-Ávila CJ, Martínez-Enriquez AI, Pariona N. Antifungal Effect of Copper Nanoparticles against Fusarium kuroshium, an Obligate Symbiont of Euwallacea kuroshio Ambrosia Beetle. J Fungi (Basel). 2022; 8(4):347.
[61] Shende S, Bhagat R, Raut R, Rai M, Gade A. Myco-Fabrication of Copper Nanoparticles and Its Effect on Crop Pathogenic Fungi. IEEE Trans Nanobioscience. 2021; 20(2):146-53.
[62] Letchumanan D, Sok SPM, Ibrahim S, Nagoor NH, Arshad NM. Plant-Based Biosynthesis of Copper/Copper Oxide Nanoparticles: An Update on Their Applications in Biomedicine, Mechanisms, and Toxicity. Biomolecules. 2021; 11(4):564.
[63] Naz S, Gul A, Zia M. Toxicity of copper oxide nanoparticles: a review study. IET Nanobiotechnol. 2020; 14(1):1-13.
[64] Hermida-Montero LA, Pariona N, Mtz-Enriquez AI, Carrión G, Paraguay-Delgado F, Rosas-Saito G. Aqueous-phase synthesis of nanoparticles of copper/copper oxides and their antifungal effect against Fusarium oxysporum. J Hazard Mater. 2019; 380:120850.
[65] El-Abeid SE, Ahmed Y, Daròs JA, Mohamed MA. Reduced Graphene Oxide Nanosheet-Decorated Copper Oxide Nanoparticles: A Potent Antifungal Nanocomposite against Fusarium Root Rot and Wilt Diseases of Tomato and Pepper Plants. Nanomaterials (Basel). 2020; 10(5):1001.
[66] Asghar MA, Zahir E, Shahid SM, Khan MN, Iqbal J, Walker G. Iron, copper and silver nanoparticles: Green synthesis using green and black tea leaves extracts and evaluation of antibacterial, antifungal and aflatoxin B1 adsorption activity. LWT. 2018; 90:98-107.
[67] Malandrakis AA, Kavroulakis N, Chrysikopoulos CV. Use of copper, silver and zinc nanoparticles against foliar and soil-borne plant pathogens. Sci Total Environ. 2019; 670:292-9.
[68] Malandrakis AA, Kavroulakis N, Chrysikopoulos CV. Synergy between Cu-NPs and fungicides against Botrytis cinerea. Sci Total Environ. 2020; 703:135557.
[69] Mali SC, Dhaka A, Githala CK, Trivedi R. Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties. Biotechnol Rep (Amst). 2020; 27:e00518.
[70] Muthulakshmi L, Rajini N, Nellaiah H, Kathiresan T, Jawaid M, Rajulu AV. Preparation and properties of cellulose nanocomposite films with in situ generated copper nanoparticles using Terminalia catappa leaf extract. Int J Biol Macromol. 2017; 95:1064-71.
[71] Pariona N, Mtz-Enriquez AI, Sánchez-Rangel D, Carrión G, Paraguay-Delgado F, Rosas-Saito G. Green-synthesized copper nanoparticles as a potential antifungal against plant pathogens. RSC Adv. 2019; 9(33):18835-43.
[72] Aleksandrowicz-Trzcińska M, Szaniawski A, Olchowik J, Drozdowski S. Effects of copper and silver nanoparticles on growth of selected species of pathogenic and wood-decay fungi in vitro. For Chron. 2018; 94:109-16.
[73] Viet PV, Nguyen HT, Cao TM, Hieu LV. Fusarium Antifungal Activities of Copper Nanoparticles Synthesized by a Chemical Reduction Method. J Nanomater. 2016; 2016:1-7.
[74] Al Jabri H, Saleem MH, Rizwan M, Hussain I, Usman K, Alsafran M. Zinc Oxide Nanoparticles and Their Biosynthesis: Overview. Life (Basel). 2022; 12(4):594.
[75] Ali S, Rizwan M, Noureen S, Anwar S, Ali B, Naveed M, Abd Allah EF, Alqarawi AA, Ahmad P. Combined use of biochar and zinc oxide nanoparticle foliar spray improved the plant growth and decreased the cadmium accumulation in rice (Oryza sativa L.) plant. Environ Sci Pollut Res Int. 2019; 26(11):11288-99.
[76] Rani S, Kumar P, Dahiya P, Dang AS, Suneja P. Biogenic Synthesis of Zinc Nanoparticles, Their Applications, and Toxicity Prospects. Front Microbiol. 2022; 13:824427.
[77] Rohova M, Kovalenko V, Tkachenko V, Lych I, Voloshyna I. Green biosynthesis of Zinc nanoparticles. ICAMS Proceedings of the International Conference on Advanced Materials and Systems. 2022; 457-60.
[78] Geremew A, Carson L, Woldesenbet S, Wang H, Reeves S, Brooks N Jr, Saganti P, Weerasooriya A, Peace E. Effect of zinc oxide nanoparticles synthesized from Carya illinoinensis leaf extract on growth and antioxidant properties of mustard (Brassica juncea). Front Plant Sci. 2023; 14:1108186.
[79] Faizan M, Bhat JA, Hessini K, Yu F, Ahmad P. Zinc oxide nanoparticles alleviates the adverse effects of cadmium stress on Oryza sativa via modulation of the photosynthesis and antioxidant defense system. Ecotoxicol Environ Saf. 2021; 220:112401.
[80] Kah M, Kookana RS, Gogos A, Bucheli TD. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat Nanotechnol. 2018; 13(8):677-84.
[81] Adhikari S, Adhikari A, Ghosh S, Roy D, Azahar I, Basuli D, Hossain Z. Assessment of ZnO-NPs toxicity in maize: An integrative microRNAomic approach. Chemosphere. 2020; 249:126197.
[82] Faizan M, Yu F, Chen C, Faraz A, Hayat S. Zinc Oxide Nanoparticles Help to Enhance Plant Growth and Alleviate Abiotic Stress: A Review. Curr Protein Pept Sci. 2021; 22(5):362-75.
[83] Sharma D, Afzal S, Singh NK. Nanopriming with phytosynthesized zinc oxide nanoparticles for promoting germination and starch metabolism in rice seeds. J Biotechnol. 2021; 336:64-75.
[84] Sturikova H, Krystofova O, Huska D, Adam V. Zinc, zinc nanoparticles and plants. J Hazard Mater. 2018; 349:101-10.
[85] Faizan M, Bhat JA, Chen C, Alyemeni MN, Wijaya L, Ahmad P, Yu F. Zinc oxide nanoparticles (ZnO-NPs) induce salt tolerance by improving the antioxidant system and photosynthetic machinery in tomato. Plant Physiol Biochem. 2021; 161:122-30.