Biopolym. Cell. 1988; 4(5):245-250.
Structure and Function of Biopolymers
The influence of ceruloplasmin, laccase and superoxide dismutase on the level of superoxide radicals
1Sergeev A. G., 1Pavlov A. R., 1Zhazhina E. O., 1Basevich V. V., 1Yaropolov A. I.
  1. A. N. Bakh Institute of Biochemistry, Academy of Sciences of the USSR
    Moscow, USSR


Ceruloplasmin (CP) and laccase were studied for their effect on the xanthine/xanthine oxidase (Xan/XOD) and NADH/phenasine methasulphate (PMS) O2-generating systems. It was shown that the kinetic action of these enzymes differs from that of superoxide dismulase (SOD). While SOD scavenges immediately O2, then CP and laccase react with a predecessor of O2 demonstrating clearly their role as electron acceptors. The results indicate that the CP acts as possible universal oxidase of mammalian and human serum.


[1] Lovstad RA. Catecholamine stimulation of copper dependent haemolysis: protective action of superoxide dismutase, catalase, hydroxyl radical scavengers and serum proteins (ceruloplasmin, albumin and apotransferrin). Acta Pharmacol Toxicol (Copenh). 1984;54(5):340-5.
[2] Ryden L. Ceruloplasmin. Copper proteins and copper enzymes. Florida: CRC press, 1984;3:38-100.
[3] Fridovich I. Superoxide dismutases. Adv Enzymol Relat Areas Mol Biol. 1974;41(0):35-97.
[4] Klug D, Rabani J, Fridovich I. A direct demonstration of the catalytic action of superoxide dismutase through the use of pulse radiolysis. J Biol Chem. 1972;247(15):4839-42.
[5] Kirby TW, Fridovich I. A picomolar spectrophotometric assay for superoxide dismutase. Anal Biochem. 1982;127(2):435-40.
[6] Goldstein IM, Kaplan HB, Edelson HS, Weissmann G. Ceruloplasmin. A scavenger of superoxide anion radicals. J Biol Chem. 1979;254(10):4040-5.
[7] Gutteridge JM, Stocks J. Caeruloplasmin: physiological and pathological perspectives. Crit Rev Clin Lab Sci. 1981;14(4):257-329.
[8] Wolf PL. Ceruloplasmin: methods and clinical use. Crit Rev Clin Lab Sci. 1982;17(3):229-45.
[9] Frieden E. Ceruloplasmin. 7 Copper in the environment. New York: Wilev, 1979. Pt 2: 241-276.
[10] Laurie S, Mohammed ES. Ceruloplasmin: the enigmatic copper protein. Coord. Chem. Revs. 1980; 33(3):279-312.
[11] Plonka A, Metodiewa D, Zgirski A, Hilewicz M, Leyko W. ESR evidence of superoxide radical dismutation by human ceruloplasmin. Biochem Biophys Res Commun. 1980;95(3):978-84.
[12] Saenko EL, Siverina OB, Basevich VV, Iaropolov AI. Kinetic study of the oxidase reaction of ceruloplasmin. Biokhimiia. 1986;51(6):1017-22.
[13] McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244(22):6049-55.
[14] Nishikimi M, Appaji N, Yagi K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun. 1972;46(2):849-54.
[15] Heuvelen AV. Kinetic studies of electron transport reactions at low temperatures in xanthine oxidase. Biochem Biophys Res Commun. 1975;64(3):963-9.
[16] Gindilis AL, Yaropolov AI, Berezin IV. The role of the mechanism of action of the enzyme in the manifestation of its electrocatalytic properties. Dokl Akad Nauk SSSR. 1987; 293 (2):383-6.
[17] Iaropolov AI, Sergeev AG, Basevich VV, Berezin IV, Revina AA. Mechanism of the antioxidant effect of ceruloplasmin. Dokl Akad Nauk SSSR. 1986;291(1):237-41.