Biopolym. Cell. 1988; 4(5):245-250.
Structure and Function of Biopolymers
The influence of ceruloplasmin, laccase and superoxide dismutase on the level of superoxide radicals
- A. N. Bakh Institute of Biochemistry, Academy of Sciences of the USSR
Moscow, USSR
Abstract
Ceruloplasmin (CP) and laccase were studied for their effect on the xanthine/xanthine oxidase (Xan/XOD) and NADH/phenasine methasulphate (PMS) O2–-generating systems. It was shown that the kinetic action of these enzymes differs from that of superoxide dismulase (SOD). While SOD scavenges immediately O2–, then CP and laccase react with a predecessor of O2– demonstrating clearly their role as electron acceptors. The results indicate that the CP acts as possible universal oxidase of mammalian and human serum.
Full text: (PDF, in Russian)
References
[1]
Lovstad RA. Catecholamine stimulation of copper dependent haemolysis: protective action of superoxide dismutase, catalase, hydroxyl radical scavengers and serum proteins (ceruloplasmin, albumin and apotransferrin). Acta Pharmacol Toxicol (Copenh). 1984;54(5):340-5.
[2]
Ryden L. Ceruloplasmin. Copper proteins and copper enzymes. Florida: CRC press, 1984;3:38-100.
[3]
Fridovich I. Superoxide dismutases. Adv Enzymol Relat Areas Mol Biol. 1974;41(0):35-97.
[4]
Klug D, Rabani J, Fridovich I. A direct demonstration of the catalytic action of superoxide dismutase through the use of pulse radiolysis. J Biol Chem. 1972;247(15):4839-42.
[5]
Kirby TW, Fridovich I. A picomolar spectrophotometric assay for superoxide dismutase. Anal Biochem. 1982;127(2):435-40.
[6]
Goldstein IM, Kaplan HB, Edelson HS, Weissmann G. Ceruloplasmin. A scavenger of superoxide anion radicals. J Biol Chem. 1979;254(10):4040-5.
[7]
Gutteridge JM, Stocks J. Caeruloplasmin: physiological and pathological perspectives. Crit Rev Clin Lab Sci. 1981;14(4):257-329.
[9]
Frieden E. Ceruloplasmin. 7 Copper in the environment. New York: Wilev, 1979. Pt 2: 241-276.
[10]
Laurie S, Mohammed ES. Ceruloplasmin: the enigmatic copper protein. Coord. Chem. Revs. 1980; 33(3):279-312.
[11]
Plonka A, Metodiewa D, Zgirski A, Hilewicz M, Leyko W. ESR evidence of superoxide radical dismutation by human ceruloplasmin. Biochem Biophys Res Commun. 1980;95(3):978-84.
[12]
Saenko EL, Siverina OB, Basevich VV, Iaropolov AI. Kinetic study of the oxidase reaction of ceruloplasmin. Biokhimiia. 1986;51(6):1017-22.
[13]
McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244(22):6049-55.
[14]
Nishikimi M, Appaji N, Yagi K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun. 1972;46(2):849-54.
[15]
Heuvelen AV. Kinetic studies of electron transport reactions at low temperatures in xanthine oxidase. Biochem Biophys Res Commun. 1975;64(3):963-9.
[16]
Gindilis AL, Yaropolov AI, Berezin IV. The role of the mechanism of action of the enzyme in the manifestation of its electrocatalytic properties. Dokl Akad Nauk SSSR. 1987; 293 (2):383-6.
[17]
Iaropolov AI, Sergeev AG, Basevich VV, Berezin IV, Revina AA. Mechanism of the antioxidant effect of ceruloplasmin. Dokl Akad Nauk SSSR. 1986;291(1):237-41.