Biopolym. Cell. 2023; 39(4):257-264.
Structure and Function of Biopolymers
Redesigning apoptotic regulator Bid for thrombin activation
1Rodnin M. V., 1, 2Kyrychenko A. V., 1Vasquez-Montes V., 1Ladokhin A. S.
  1. Department of Biochemistry and Molecular Biology
    Kansas University Medical Center
    Kansas City, KS, USA, 66160-7421
  2. V. N. Karazin Kharkiv National University
    4, Svobody Ave., Kharkiv, Ukraine, 61022

Abstract

The apoptotic regulator Bid is a key member of the BH3-only protein family, through which the internal and external apoptotic pathways intercept. In cells, Bid is activated by proteolytic cleavage with caspase 9, which results in the formation of its truncated form tBid. In turn, tBid activates pro-apoptotic members of the Bcl-2 family, such as BAX, leading to the permeation of the outer mitochondrial membrane, considered to be a point of no return in apoptotic programmed cell death. Deciphering the molecular mechanism of this process requires biophysical studies using in vitro models. To amend the latter studies, we present here a redesigned version of Bid, in which the caspase cleavage site was replaced with a thrombin-specific cleavage site. We confirm that the tBid generated by thrombin cleavage has functional activity and can target BAX to mitochondria-like membrane causing their permeabilization. Using a combination of FRET spectroscopy with a site-selective fluorescent label we have probed the membrane-induced separation of Bid fragments after thrombin cleavage. We demonstrate that the latter dissociation and tBid-dependent activation of BAX are modulated by the lipid composition of target membranes, specifically by the presence of cardiolipin, which promotes both processes.
Keywords: apoptotic regulators, Bid, BAX, cardiolipin, Förster resonance energy transfer (FRET), membrane permeabilization

References

[1] Wang C, Youle RJ. The role of mitochondria in apoptosis*. Annu Rev Genet. 2009; 43:95-118.
[2] Cosentino K, García-Sáez AJ. Mitochondrial alterations in apoptosis. Chem Phys Lipids. 2014; 181:62-75.
[3] García-Sáez AJ, Mingarro I, Pérez-Payá E, Salgado J. Membrane-insertion fragments of Bcl-xL, Bax, and Bid. Biochemistry. 2004; 43(34):10930-43.
[4] García-Sáez AJ, Ries J, Orzáez M, Pérez-Payà E, Schwille P. Membrane promotes tBID interaction with BCL(XL). Nat Struct Mol Biol. 2009; 16(11):1178-85.
[5] Crimi M, Esposti MD. Apoptosis-induced changes in mitochondrial lipids. Biochim Biophys Acta. 2011; 1813(4):551-7.
[6] Flores-Romero H, Hohorst L, John M, Albert MC, King LE, Beckmann L, Szabo T, Hertlein V, Luo X, Villunger A, Frenzel LP, Kashkar H, Garcia-Saez AJ. BCL-2-family protein tBID can act as a BAX-like effector of apoptosis. EMBO J. 2022; 41(2):e108690.
[7] Flores-Romero H, García-Sáez AJ. The Incomplete Puzzle of the BCL2 Proteins. Cells. 2019; 8(10):1176.
[8] Vasquez-Montes V, Rodnin MV, Kyrychenko A, Ladokhin AS. Lipids modulate the BH3-independent membrane targeting and activation of BAX and Bcl-xL. Proc Natl Acad Sci U S A. 2021; 118(37):e2025834118.
[9] Vasquez-Montes V, Vargas-Uribe M, Pandey NK, Rodnin MV, Langen R, Ladokhin AS. Lipid-modulation of membrane insertion and refolding of the apoptotic inhibitor Bcl-xL. Biochim Biophys Acta Proteins Proteom. 2019; 1867(7-8):691-700.
[10] Vargas-Uribe M, Rodnin MV, Ladokhin AS. Comparison of membrane insertion pathways of the apoptotic regulator Bcl-xL and the diphtheria toxin translocation domain. Biochemistry. 2013; 52(45):7901-9.
[11] Hope MJ, Bally MB, Webb G, Cullis PR. Production of large unilamellar vesicles by a rapid extrusion procedure: characterization of size distribution, trapped volume and ability to maintain a membrane potential. Biochim Biophys Acta. 1985; 812(1):55-65.
[12] Mayer LD, Hope MJ, Cullis PR. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta. 1986; 858(1):161-8.
[13] Rodnin MV, Kyrychenko A, Kienker P, Sharma O, Vargas-Uribe M, Collier RJ, Finkelstein A, Ladokhin AS. Replacement of C-terminal histidines uncouples membrane insertion and translocation in diphtheria toxin T-domain. Biophys J. 2011; 101(10):L41-3.
[14] Llambi F, Moldoveanu T, Tait SW, Bouchier-Hayes L, Temirov J, McCormick LL, Dillon CP, Green DR. A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol Cell. 2011; 44(4):517-31.
[15] Moldoveanu T, Follis AV, Kriwacki RW, Green DR. Many players in BCL-2 family affairs. Trends Biochem Sci. 2014; 39(3):101-11.
[16] Kurnikov IV, Kyrychenko A, Flores-Canales JC, Rodnin MV, Simakov N, Vargas-Uribe M, Posokhov YO, Kurnikova M, Ladokhin AS. pH-triggered conformational switching of the diphtheria toxin T-domain: the roles of N-terminal histidines. J Mol Biol. 2013; 425(15):2752-64.
[17] Korytowski W, Basova LV, Pilat A, Kernstock RM, Girotti AW. Permeabilization of the mitochondrial outer membrane by Bax/truncated Bid (tBid) proteins as sensitized by cardiolipin hydroperoxide translocation: mechanistic implications for the intrinsic pathway of oxidative apoptosis. J Biol Chem. 2011; 286(30):26334-43.
[18] Chou JJ, Li H, Salvesen GS, Yuan J, Wagner G. Solution structure of BID, an intracellular amplifier of apoptotic signaling. Cell. 1999; 96(5):615-24.