Biopolym. Cell. 2023; 39(4):245-256.
Biomedical applications of polymers in biosensors, cancer vaccines and drug delivery systems
1Selvakumar P.
  1. Department of Chemistry, Nehru Institute of Technology
    Coimbatore-641105, Tamilnadu, India


Aim. To analyze the substantial development of biomedical polymers in a number of potential biomedical domains, including the disease diagnosis and therapy. Results. The relationship between material's properties and functions for matching biomedical applications is thoroughly elucidated in this paper, along with a rundown of current advancements in the production and appliance of biomedical polymers. The peptide, biomembrane, microbe and cell-based biomedical polymers are presented and highlighted as new biomaterials for the tumor precision treatment. Additionally, the prospects and difficulties of creating the future biomedical polymers, which are healthier, safer, and more effective, are appraised. Conclusions. This systematic and in-depth analysis of the most recent advancements in the biomedical polymers development is intended to inspire and promote new discoveries in the basic science and clinical application.
Keywords: biomedical polymers, synthesis, properties and applications


[1] Rivas L, Dulay S, Miserere S, Pla L, Marin SB, Parra J, Eixarch E, Gratacós E, Illa M, Mir M, Samitier J. Micro-needle implantable electrochemical oxygen sensor: ex-vivo and in-vivo studies. Biosens Bioelectron. 2020; 153:112028.
[2] Feng J, Chen C, Sun X, Peng H. Implantable Fiber Biosensors Based on Carbon Nanotubes. Acc Mater Res. 2021; 2(3):138-46.
[3] Wang J, Wang L, Feng J, Tang C, Sun X, Peng H. Long-term In Vivo Monitoring of Chemicals with Fiber Sensors. Adv Fiber Mater. 2021; 3(1):47-58.
[4] Wang L, Guo W, Shen X, Yeo S, Long H, Wang Z, Lyu Q, Herbison AE, Kuang Y. Different dendritic domains of the GnRH neuron underlie the pulse and surge modes of GnRH secretion in female mice. Elife. 2020; 9:e53945.
[5] Yu X, Wang H, Ning X, Sun R, Albadawi H, Salomao M, Silva AC, Yu Y, Tian L, Koh A, Lee CM, Chempakasseril A, Tian P, Pharr M, Yuan J, Huang Y, Oklu R, Rogers JA. Needle-shaped ultrathin piezoelectric microsystem for guided tissue targeting via mechanical sensing. Nat Biomed Eng. 2018; 2(3):165-72.
[6] Booth MA, Gowers SAN, Hersey M, Samper IC, Park S, Anikeeva P, Hashemi P, Stevens MM, Boutelle MG. Fiber-Based Electrochemical Biosensors for Monitoring pH and Transient Neurometabolic Lactate. Anal Chem. 2021; 93(17):6646-55.
[7] Wu X, Feng J, Deng J, Cui Z, Wang L, Xie S, Chen C, Tang C, Han Z, Yu H, Sun X, Peng H. Fiber-shaped organic electrochemical transistors for biochemical detections with high sensitivity and stability. Sci China Chem. 2020; 63(9):1281-8.
[8] Loeb GE, Bak MJ, Salcman M, Schmidt EM. Parylene as a chronically stable, reproducible microelectrode insulator. IEEE Trans Biomed Eng. 1977; 24(2):121-8.
[9] Sun X, Sun H, Li H, Peng H. Developing polymer composite materials: carbon nanotubes or graphene? Adv Mater. 2013; 25(37):5153-76.
[10] Yang Z, Deng J, Sun X, Li H, Peng H. Stretchable, Wearable Dye‐Sensitized Solar Cells. Adv Mater. 2014; 26(17):2643-7.
[11] Abhilasha A, Sreenivasulu A, Manimozhi T, KUMAR PS, Selvakumar P, Singh P. The Model of Smart Sensing Device For Sensitive Nanoclusters Modification in Sensing Properties. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). 2022; 1043-7.
[12] Wang L, Xie S, Wang Z, Liu F, Yang Y, Tang C, Wu X, Liu P, Li Y, Saiyin H, Zheng S, Sun X, Xu F, Yu H, Peng H. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat Biomed Eng. 2020; 4(2):159-71.
[13] Ramakrishnan T, Mohan Gift MD, Chitradevi S, Jegan R, Hency Jose PS, Nagaraja HN, Sharma R, Selvakumar P, Hailegiorgis SM. Study of Numerous Resins Used in Polymer Matrix Composite Materials. Adv Mater Sci Eng. 2022; 2022:1-8.
[14] Lee W, Kim D, Matsuhisa N, Nagase M, Sekino M, Malliaras GG, Yokota T, Someya T. Transparent, conformable, active multielectrode array using organic electrochemical transistors. Proc Natl Acad Sci U S A. 2017; 114(40):10554-9.
[15] Lee W, Kim D, Rivnay J, Matsuhisa N, Lonjaret T, Yokota T, Yawo H, Sekino M, Malliaras GG, Someya T. Integration of Organic Electrochemical and Field-Effect Transistors for Ultraflexible, High Temporal Resolution Electrophysiology Arrays. Adv Mater. 2016; 28(44):9722-8.
[16] Cea C, Spyropoulos GD, Jastrzebska-Perfect P, Ferrero JJ, Gelinas JN, Khodagholy D. Enhancement-mode ion-based transistor as a comprehensive interface and real-time processing unit for in vivo electrophysiology. Nat Mater. 2020; 19(6):679-86.
[17] Fu X, Li J, Tang C, Xie S, Sun X, Wang B, Peng H. Hydrogel Cryo‐Microtomy Continuously Making Soft Electronic Devices. Adv Funct Mater. 2021; 31(7):2008355.
[18] Zhai D, Liu B, Shi Y, Pan L, Wang Y, Li W, Zhang R, Yu G. Highly sensitive glucose sensor based on pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano. 2013; 7(4):3540-6.
[19] Choi SW, Chang HJ, Lee N, Kim JH, Chun HS. Detection of mycoestrogen zearalenone by a molecularly imprinted polypyrrole-based surface plasmon resonance (SPR) sensor. J Agric Food Chem. 2009; 57(4):1113-8.
[20] Wang L, Chen J, Wang J, Li H, Chen C, Feng J, Guo Y, Yu H, Sun X, Peng H. Flexible dopamine-sensing fiber based on potentiometric method for long-term detection in vivo. Sci China Chem. 2021; 64(10): 1763-9.
[21] Ma RN, Wang B, Liu Y, Li J, Zhao Q, Wang GT, Jia WL, Wang HS. Direct electrochemistry of glucose oxidase on the hydroxyapatite/Nafion composite film modified electrode and its application for glucose biosensing. Sci China Ser B-Chem. 2009; 52(11):2013-19.
[22] Arroyo-Currás N, Somerson J, Vieira PA, Ploense KL, Kippin TE, Plaxco KW. Real-time measurement of small molecules directly in awake, ambulatory animals. Proc Natl Acad Sci U S A. 2017; 114(4):645-50.
[23] Feng T, Ji W, Zhang Y, Wu F, Tang Q, Wei H, Mao L, Zhang M. Zwitterionic Polydopamine Engineered Interface for In Vivo Sensing with High Biocompatibility. Angew Chem Int Ed Engl. 2020; 59(52):23445-9.
[24] Guan S, Wang J, Gu X, Zhao Y, Hou R, Fan H, Zou L, Gao L, Du M, Li C, Fang Y. Elastocapillary self-assembled neurotassels for stable neural activity recordings. Sci Adv. 2019; 5(3):eaav2842.
[25] Qiu F, Becker KW, Knight FC, Baljon JJ, Sevimli S, Shae D, Gilchuk P, Joyce S, Wilson JT. Poly(propylacrylic acid)-peptide nanoplexes as a platform for enhancing the immunogenicity of neoantigen cancer vaccines. Biomaterials. 2018; 182:82-91.
[26] Dong X, Liang J, Yang A, Qian Z, Kong D, Lv F. A Visible Codelivery Nanovaccine of Antigen and Adjuvant with Self-Carrier for Cancer Immunotherapy. ACS Appl Mater Interfaces. 2019; 11(5):4876-88.
[27] Luo M, Wang H, Wang Z, Cai H, Lu Z, Li Y, Du M, Huang G, Wang C, Chen X, Porembka MR, Lea J, Frankel AE, Fu YX, Chen ZJ, Gao J. A STING-activating nanovaccine for cancer immunotherapy. Nat Nanotechnol. 2017; 12(7):648-54.
[28] Zaric M, Lyubomska O, Touzelet O, Poux C, Al-Zahrani S, Fay F, Wallace L, Terhorst D, Malissen B, Henri S, Power UF, Scott CJ, Donnelly RF, Kissenpfennig A. Skin dendritic cell targeting via microneedle arrays laden with antigen-encapsulated poly-D,L-lactide-co-glycolide nanoparticles induces efficient antitumor and antiviral immune responses. ACS Nano. 2013; 7(3):2042-55.
[29] Kroll AV, Fang RH, Jiang Y, Zhou J, Wei X, Yu CL, Gao J, Luk BT, Dehaini D, Gao W, Zhang L. Nanoparticulate Delivery of Cancer Cell Membrane Elicits Multiantigenic Antitumor Immunity. Adv Mater. 2017; 29(47):10.1002/adma.201703969.
[30] Min Y, Roche KC, Tian S, Eblan MJ, McKinnon KP, Caster JM, Chai S, Herring LE, Zhang L, Zhang T, DeSimone JM, Tepper JE, Vincent BG, Serody JS, Wang AZ. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat Nanotechnol. 2017; 12(9):877-82.
[31] Stephan MT, Stephan SB, Bak P, Chen J, Irvine DJ. Synapse-directed delivery of immunomodulators using T-cell-conjugated nanoparticles. Biomaterials. 2012; 33(23):5776-87.
[32] Tang L, Zheng Y, Melo MB, Mabardi L, Castaño AP, Xie YQ, Li N, Kudchodkar SB, Wong HC, Jeng EK, Maus MV, Irvine DJ. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat Biotechnol. 2018; 36(8):707-16.
[33] He C, Duan X, Guo N, Chan C, Poon C, Weichselbaum RR, Lin W. Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. Nat Commun. 2016; 7:12499.
[34] Polla Ravi S, Shamiya Y, Chakraborty A, Elias C, Paul A. Biomaterials, biological molecules, and polymers in developing vaccines. Trends Pharmacol Sci. 2021; 42(10):813-28.
[35] Selvakumar P. Novel Drug Target with Diverse Therapeutic Potential in Cancer Therapy. Pharma Times. 2023; 55(1):11-4.
[36] Allard B, Pommey S, Smyth MJ, Stagg J. Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs. Clin Cancer Res. 2013; 19(20):5626-35.
[37] Tray N, Weber JS, Adams S. Predictive Biomarkers for Checkpoint Immunotherapy: Current Status and Challenges for Clinical Application. Cancer Immunol Res. 2018; 6(10):1122-8.
[38] Li SY, Liu Y, Xu CF, Shen S, Sun R, Du XJ, Xia JX, Zhu YH, Wang J. Restoring anti-tumor functions of T cells via nanoparticle-mediated immune checkpoint modulation. J Control Release. 2016; 231:17-28.
[39] Li Y, Fang M, Zhang J, Wang J, Song Y, Shi J, Li W, Wu G, Ren J, Wang Z, Zou W, Wang L. Hydrogel dual delivered celecoxib and anti-PD-1 synergistically improve antitumor immunity. Oncoimmunology. 2015; 5(2):e1074374.
[40] Yu S, Wang C, Yu J, Wang J, Lu Y, Zhang Y, Zhang X, Hu Q, Sun W, He C, Chen X, Gu Z. Injectable Bioresponsive Gel Depot for Enhanced Immune Checkpoint Blockade. Adv Mater. 2018; 30(28):e1801527.
[41] Wang C, Ye Y, Hochu GM, Sadeghifar H, Gu Z. Enhanced Cancer Immunotherapy by Microneedle Patch-Assisted Delivery of Anti-PD1 Antibody. Nano Lett. 2016; 16(4):2334-40.