Biopolym. Cell. 2023; 39(3):231-241.
Molecular Biomedicine
Alterations in lncRNAs H19 and TUG1 expression and their correlation with hemodynamics in myocardial infarction
1Khetsuriani M., 1Drevytska T. I., 1Tumanovska L., 1Portnichenko G. V., 2Hegel-Valentych Y., 3Niekrasova V. O., 1Shysh A. M., 1Dosenko V. Ie.
  1. Bogomoletz Institute of Physiology, National Academy of Sciences
    4, Bogomoletz Str., Kyiv, Ukraine, 01024
  2. Jagiellonian University, WBBiB
    24, Gołębia Str., Kraków, Poland, 31-007
  3. Biology And Medicine Institute Science Educational Center Of Taras Shevchenko National University Of Kyiv
    2, Hlushkova Ave., Kyiv, Ukraine, 03022

Abstract

Aim. This study aimed to investigate the changes in hemodynamic parameters and expression of lncRNAs H19 and TUG1 in a rat model of myocardial infarction (MI). Methods. The effects of MI (ligating the LAD during 4 weeks) on the hemodynamic parameters were evaluated using a specific recording catheter. Additionally, we assessed the changes in myocardial and plasma levels of lncRNAs H19 and TUG1 using quantitative PCR. Pearson's correlation coefficient analysis was employed to understand the relationship between the lncRNAs expression and hemodynamic parameters. Results. Our study revealed significant alterations in several hemodynamic parameters post-MI. The expression levels of H19 significantly decreased, while TUG1 increased in the myocardium and blood plasma of rats following MI. A strong correlation was identified between these lncRNAs and several hemodynamic parameters. Conclusions. The data suggest that H19 and TUG1 are potentially important regulators of cardiac function post-MI, with their altered expression levels being associated with significant changes in key hemodynamic parameters. These findings underscore the importance of lncRNAs in the cardiac response to MI and pave the way for future studies to further elucidate their precise role and potential as therapeutic targets or biomarkers in heart disease.
Keywords: H19, TUG1, long non-coding RNAs, myocardial infarction, hemodynamics, RNA

References

[1] Mc Namara K, Alzubaidi H, Jackson JK. Cardiovascular disease as a leading cause of death: how are pharmacists getting involved? Integr Pharm Res Pract. 2019; 8:1-11.
[2] Fang Y, Xu Y, Wang R, Hu L, Guo D, Xue F, Guo W, Zhang D, Hu J, Li Y, Zhang W, Zhang M. Recent advances on the roles of LncRNAs in cardiovascular disease. J Cell Mol Med. 2020; 24(21):12246-57.
[3] Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016; 17(1):47-62.
[4] Busscher D, Boon RA, Juni RP. The multifaceted actions of the lncRNA H19 in cardiovascular biology and diseases. Clin Sci (Lond). 2022; 136(15):1157-78.
[5] Wang YW, Dong HZ, Tan YX, Bao X, Su YM, Li X, Jiang F, Liang J, Huang ZC, Ren YL, Xu YL, Su Q. HIF-1α-regulated lncRNA-TUG1 promotes mitochondrial dysfunction and pyroptosis by directly binding to FUS in myocardial infarction. Cell Death Discov. 2022; 8(1):178.
[6] Su Q, Liu Y, Lv XW, Dai RX, Yang XH, Kong BH. LncRNA TUG1 mediates ischemic myocardial injury by targeting miR-132-3p/HDAC3 axis. Am J Physiol Heart Circ Physiol. 2020; 318(2):H332-H344.
[7] Pacher P, Nagayama T, Mukhopadhyay P, Bátkai S, Kass DA. Measurement of cardiac function using pressure-volume conductance catheter technique in mice and rats. Nat Protoc. 2008; 3(9):1422-34.
[8] Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation. 1990; 81(4):1161-72.
[9] Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling--concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol. 2000; 35(3):569-82.
[10] Sutton MG, Sharpe N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation. 2000; 101(25):2981-8.
[11] Pacher P, Nagayama T, Mukhopadhyay P, Bátkai S, Kass DA. Measurement of cardiac function using pressure-volume conductance catheter technique in mice and rats. Nat Protoc. 2008; 3(9):1422-34.
[12] Schmidt MR, Smerup M, Konstantinov IE, Shimizu M, Li J, Cheung M, White PA, Kristiansen SB, Sorensen K, Dzavik V, Redington AN, Kharbanda RK. Intermittent peripheral tissue ischemia during coronary ischemia reduces myocardial infarction through a KATP-dependent mechanism: first demonstration of remote ischemic perconditioning. Am J Physiol Heart Circ Physiol. 2007; 292(4):H1883-90.
[13] Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA. Controversies in ventricular remodelling. Lancet. 2006; 367(9507):356-67.
[14] Kelly RP, Ting CT, Yang TM, Liu CP, Maughan WL, Chang MS, Kass DA. Effective arterial elastance as index of arterial vascular load in humans. Circulation. 1992; 86(2):513-21.
[15] Wang H, Lian X, Gao W, Gu J, Shi H, Ma Y, Li Y, Fan Y, Wang Q, Wang L. Long noncoding RNA H19 suppresses cardiac hypertrophy through the MicroRNA-145-3p/SMAD4 axis. Bioengineered. 2022; 13(2):3826-39.
[16] Gong LC, Xu HM, Guo GL, Zhang T, Shi JW, Chang C. Long Non-Coding RNA H19 Protects H9c2 Cells against Hypoxia-Induced Injury by Targeting MicroRNA-139. Cell Physiol Biochem. 2017; 44(3):857-69.
[17] Zhang L, Liu T, Wang P, Shen Y, Huang T. Overexpression of Long Noncoding RNA H19 Inhibits Cardiomyocyte Apoptosis in Neonatal Rats with Hypoxic-Ischemic Brain Damage Through the miR-149-5p/LIF/PI3K/Akt Axis. Biopreserv Biobank. 2021; 19(5):376-85.
[18] Zhou M, Zou YG, Xue YZ, Wang XH, Gao H, Dong HW, Zhang Q. Long non-coding RNA H19 protects acute myocardial infarction through activating autophagy in mice. Eur Rev Med Pharmacol Sci. 2018; 22(17):5647-51.
[19] Tao H, Cao W, Yang JJ, Shi KH, Zhou X, Liu LP, Li J. Long noncoding RNA H19 controls DUSP5/ERK1/2 axis in cardiac fibroblast proliferation and fibrosis. Cardiovasc Pathol. 2016; 25(5):381-9.
[20] Choong OK, Chen CY, Zhang J, Lin JH, Lin PJ, Ruan SC, Kamp TJ, Hsieh PCH. Hypoxia-induced H19/YB-1 cascade modulates cardiac remodeling after infarction. Theranostics. 2019; 9(22):6550-67.
[21] Su Q, Liu Y, Lv XW, Dai RX, Yang XH, Kong BH. LncRNA TUG1 mediates ischemic myocardial injury by targeting miR-132-3p/HDAC3 axis. Am J Physiol Heart Circ Physiol. 2020; 318(2):H332-H344.
[22] Fu D, Gao T, Liu M, Li C, Li H, Jiang H, Fu X. LncRNA TUG1 aggravates cardiomyocyte apoptosis and myocardial ischemia/reperfusion injury. Histol Histopathol. 2021; 36(12):1261-72.
[23] Zou X, Wang J, Tang L, Wen Q. LncRNA TUG1 contributes to cardiac hypertrophy via regulating miR-29b-3p. In Vitro Cell Dev Biol Anim. 2019; 55(7):482-90.
[24] Fang Q, Liu T, Yu C, Yang X, Shao Y, Shi J, Ye X, Zheng X, Yan J, Xu D, Zou X. LncRNA TUG1 alleviates cardiac hypertrophy by targeting miR-34a/DKK1/Wnt-β-catenin signalling. J Cell Mol Med. 2020; 24(6):3678-91.