Biopolym. Cell. 2023; 39(2):131-145.
Molecular and Cell Biotechnologies
Komagataeibacter oboediens changes outer membrane vesicle-associated activities after exposure on the International Space Station
1Podolich O. V., 1Zubova G. V., 1Orlovska I. V., 1Kukharenko O. E., 1Shyryna T. V., 1Palchykovska L. G., 1Zaika L. A., 1Zaets I. E., 1Kozyrovska N. O.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03143

Abstract

Aim. We researched OMVs of Komagataeibacter oboediens isolated from kombucha microbial community samples exposed to the space/Mars-like stressors simulated on the International Space Station and cultivated within a five-year period to know more about their behaviour with biomolecules and mammalian cells. Methods. A series of in vitro experiments on the RNA cleavage, DNA and RNA transcription inhibition and cytotoxic assay with OMVs/Komagataeibacter were conducted. SignalP 6.0 was used for detecting signal peptides in predicted ribonucleases in K. oboediens genome, and ProtComp Version 9 served for identifying RNase sub-cellular location. Results. The behaviour of OMVs in bacteria before and after an impact of stressful conditions differed, relying on differences in associated nucleolytic activity, the inhibitory capabilities against the T7 bacteriophage RNA polymerase and Taq DNA polymerases and a cytotoxic effect, despite identical nucleotide sequences in homologous genes. The in vitro inhibition of RNA and DNA transcriptions was less pronounced in OMVs of exposed bacteria than in vesicles of the ground-based strain. It correlated with a lower RNase activity and a loss of cytotoxicity towards human malignant cells, even five years after the flight. Bacterial RNase I was predicted to be located in the OMV periplasm. Conclusions. Komagataeibacter’s OMV-associated activities were modified after exposure to the International Space Station and inherited in a non-genetic manner.
Keywords: outer membrane vesicles, stressful factors, non-genetic modification, RNase I

References

[1] Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, Ayre DC, Bach JM, Bachurski D, Baharvand H, Balaj L et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018; 7(1):1535750.
[2] Gill S, Catchpole R, Forterre P. Extracellular membrane vesicles in the three domains of life and beyond. FEMS Microbiol Rev. 2019; 43(3):273-303.
[3] McMillan HM, Rogers N, Wadle A, Hsu-Kim H, Wiesner MR, Kuehn MJ, Hendren CO. Microbial vesicle-mediated communication: convergence to understand interactions within and between domains of life. Environ Sci Process Impacts. 2021; 23(5):664-77.
[4] Sim S, Lee DH, Kim KS, Park HJ, Kim YK, Choi Y, Park HS. Micrococcus luteus-derived extracellular vesicles attenuate neutrophilic asthma by regulating miRNAs in airway epithelial cells. Exp Mol Med. 2023; 55(1):196-204.
[5] Jalalifar S, Morovati Khamsi H, Hosseini-Fard SR, Karampoor S, Bajelan B, Irajian G, Mirzaei R. Emerging role of microbiota derived outer membrane vesicles to preventive, therapeutic and diagnostic proposes. Infect Agent Cancer. 2023; 18(1):3.
[6] Jhelum H, Sori H, Sehgal D. A novel extracellular vesicle-associated endodeoxyribonuclease helps Streptococcus pneumoniae evade neutrophil extracellular traps and is required for full virulence. Sci Rep. 2018; 8(1):7985.
[7] Dhital S, Deo P, Bharathwaj M, Horan K, Nickson J, Azad M, Stuart I, Chow SH, Gunasinghe SD, Bamert R, Li J, Lithgow T, Howden BP, Naderer T. Neisseria gonorrhoeae-derived outer membrane vesicles package β-lactamases to promote antibiotic resistance. Microlife. 2022; 3:uqac013.
[8] Han F, Wang W, Shi M, Zhou H, Yao Y, Li C, Shang A. Outer membrane vesicles from bacteria: Role and potential value in the pathogenesis of chronic respiratory diseases. Front Cell Infect Microbiol. 2022; 12:1093327.
[9] Podolich O, Kukharenko O, Zaets I, Orlovska I, Palchykovska L, Zaika L, Sysoliatin S, Zubova G, Reva O, Galkin M, Horid'ko T, Kosiakova H, Borisova T, Kravchenko V, Skoryk M, Kremenskoy M, Ghosh P, Barh D, Góes-Neto A, Azevedo V, de Vera JP, Kozyrovska N. Fitness of Outer Membrane Vesicles From Komagataeibacter intermedius Is Altered Under the Impact of Simulated Mars-like Stressors Outside the International Space Station. Front Microbiol. 2020; 11:1268.
[10] Yamada Y, Yukphan P, Lan Vu HT, Muramatsu Y, Ochaikul D, Tanasupawat S, Nakagawa Y. Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). J Gen Appl Microbiol. 2012; 58(5):397-404.
[11] Lin SP, Huang YH, Hsu KD, Lai YJ, Chen YK, Cheng KC. Isolation and identification of cellulose-producing strain Komagataeibacter intermedius from fermented fruit juice. Carbohydr Polym. 2016; 151:827-33.
[12] Reva ON, Zaets IE, Ovcharenko LP, Kukharenko OE, Shpylova SP, Podolich OV, de Vera JP, Kozyrovska NO. Metabarcoding of the kombucha microbial community grown in different microenvironments. AMB Express. 2015; 5(1):124.
[13] Fukami H, Tachimoto H, Kishi M, Kage T, Tanaka Y, Koga Y, Shirasawa T. Continuous Ingestion of Acetic Acid Bacteria: Effect on Cognitive Function in Healthy Middle-Aged and Elderly Persons. Anti-aging Med. 2009; 6:60-5.
[14] Tsuchiya Y, Ban M, Kishi M, Ono T, Masaki H. Safety and Efficacy of Oral Intake of Ceramide-Containing Acetic Acid Bacteria for Improving the Stratum Corneum Hydration: A Randomized, Double-Blind, Placebo-Controlled Study over 12 Weeks. J Oleo Sci. 2020; 69(11):1497-508.
[15] Krzyżek P, Marinacci B, Vitale I, Grande R. Extracellular Vesicles of Probiotics: Shedding Light on the Biological Activity and Future Applications. Pharmaceutics. 2023; 15(2):522.
[16] Kozyrovska N, Reva O, Podolich O, Kukharenko O, Orlovska I, Terzova V, Zubova G, Trovatti Uetanabaro AP, Góes-Neto A, Azevedo V, Barh D, Verseux C, Billi D, Kołodziejczyk AM, Foing B, Demets R, Vera J-P. To Other Planets With Upgraded Millennial Kombucha in Rhythms of Sustainability and Health Support. Front Astron Space Sci. 8:701158.
[17] Orlovska I, Podolich O, Kukharenko O, Zubova G, Reva O, di Cesare A, Góes-Neto A, Azevedo V, Barh D, de Vera J.-P, Kozyrovska N. The Conceptual Approach to The Use of Postbiotics Based on Bacterial Membrane Nanovesicles for Prophylaxis of Astronauts' Health Disorders. Kosm Nauka Tehnol. 2022; 28(6):34-51.
[18] Jiang L, Driedonks TAP, Jong WSP, Dhakal S, Bart van den Berg van Saparoea H, Sitaras I, Zhou R, Caputo C, Littlefield K, Lowman M, Chen M, Lima G, Gololobova O, Smith B, Mahairaki V, Riley Richardson M, Mulka KR, Lane AP, Klein SL, Pekosz A, Brayton C, Mankowski JL, Luirink J, Villano JS, Witwer KW. A bacterial extracellular vesicle-based intranasal vaccine against SARS-CoV-2 protects against disease and elicits neutralizing antibodies to wild-type and Delta variants. J Extracell Vesicles. 2022; 11(3):e12192.
[19] Suri K, D'Souza A, Huang D, Bhavsar A, Amiji M. Bacterial extracellular vesicle applications in cancer immunotherapy. Bioact Mater. 2022; 22:551-66.
[20] Zhang Y, Lu Y, Xu Y, Zhou Z, Li Y, Ling W, Song W. Bio-Inspired Drug Delivery Systems: From Synthetic Polypeptide Vesicles to Outer Membrane Vesicles. Pharmaceutics. 2023; 15(2):368.
[21] Podolich O, Kukharenko O, Haidak A, Zaets I, Zaika L, Storozhuk O, Palchikovska L, Orlovska I, Reva O, Borisova T, Khirunenko L, Sosnin M, Rabbow E, Kravchenko V, Skoryk M, Kremenskoy M, Demets R, Olsson-Francis K, Kozyrovska N, de Vera JP. Multimicrobial Kombucha Culture Tolerates Mars-Like Conditions Simulated on Low-Earth Orbit. Astrobiology. 2019; 19(2):183-96.
[22] Santana de Carvalho D, Trovatti Uetanabaro AP, Kato RB, Aburjaile FF, Jaiswal AK, Profeta R, De Oliveira Carvalho RD, Tiwar S, Cybelle Pinto Gomide A, Almeida Costa E, Kukharenko O, Orlovska I, Podolich O, Reva O, Ramos PIP, De Carvalho Azevedo VA, Brenig B, Andrade BS, de Vera JP, Kozyrovska NO, Barh D, Góes-Neto A. The Space-Exposed Kombucha Microbial Community Member Komagataeibacter oboediens Showed Only Minor Changes in Its Genome After Reactivation on Earth. Front Microbiol. 2022; 13:782175.
[23] Hestrin S, Schramm M. Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J. 1954; 58(2):345-52.
[24] Novikov VV, Varzatskii OA, Negrutska VV, Bubnov YN, Palchykovska LG, Dubey IY, Voloshin YZ. Size matters, so does shape: Inhibition of transcription of T7 RNA polymerase by iron(II) clathrochelates. J Inorg Biochem. 2013; 124:42-5.
[25] Hermant B, Gudrun A, Potopalsky AI, Chroboczek J, Tcherniuk SO. Amitozyn impairs chromosome segregation and induces apoptosis via mitotic checkpoint activation. PLoS One. 2013; 8(3):e57461.
[26] Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983; 65(1-2):55-63.
[27] Teufel F, Armenteros JJA, Johansen AR, Gíslason MH, Pihl SI, Tsirigos KD, Winther O, Brunak S, von Heijne G, Nielsen H. SignalP 6.0 achieves signal peptide prediction across all types using protein language models. bioRxiv. 2021.06.09.447770.
[28] Zhang R, Zhao L, Wang H, Ng TB. A novel ribonuclease with antiproliferative activity toward leukemia and lymphoma cells and HIV-1 reverse transcriptase inhibitory activity from the mushroom, Hohenbuehelia serotina. Int J Mol Med. 2014; 33(1):209-14.
[29] Xu L, Geng X, Chang M, Meng J, Wang H, Ng TB. A Novel Ribonuclease with HIV-1 Reverse Transcriptase Inhibitory Activity Purified from the Field Blewit Mushroom Lepista personata (Agaricomycetes). Int J Med Mushrooms. 2020; 22(10):991-1000.
[30] Kumar R, Katwal S, Sharma B, Sharma A, Puri S, Kamboj N, Kanwar SS. Purification, characterization and cytotoxic properties of a bacterial RNase. Int J Biol Macromol. 2021; 166:665-76.
[31] Grünberg S, Coxam B, Chen TH, Dai N, Saleh L, Corrêa IR, Nichols NM, Yigit E. E. coli RNase I exhibits a strong Ca2+-dependent inherent double-stranded RNase activity. Nucleic Acids Res. 2021; 49(9):5265-77.
[32] Luhtala N, Parker R. T2 Family ribonucleases: ancient enzymes with diverse roles. Trends Biochem Sci. 2010; 35(5):253-9.
[33] Neu HC, Heppel LA. The release of ribonuclease into the medium when E. coli cells are converted to spheroplasts. Biochem Biophys Res Commun. 1964; 14:109-12.
[34] Sánchez-Romero MA, Casadesús J. The bacterial epigenome. Nat Rev Microbiol. 2020; 18(1):7-20.
[35] Jackson EK. Discovery and Roles of 2',3'-cAMP in Biological Systems. Handb Exp Pharmacol. 2017; 238:229-52.
[36] Duggal Y, Fontaine BM, Dailey DM, Ning G, Weinert EE. RNase I Modulates Escherichia coli Motility, Metabolism, and Resistance. ACS Chem Biol. 2020; 15(7):1996-2004.
[37] Duggal Y, Kurasz JE, Fontaine BM, Marotta NJ, Chauhan SS, Karls AC, Weinert EE. Cellular Effects of 2',3'-Cyclic Nucleotide Monophosphates in Gram-Negative Bacteria. J Bacteriol. 2022; 204(1):e0020821.
[38] Kalia D, Merey G, Nakayama S, Zheng Y, Zhou J, Luo Y, Guo M, Roembke BT, Sintim HO. Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. Chem Soc Rev. 2013; 42(1):305-41.
[39] Fontaine BM, Martin KS, Garcia-Rodriguez JM, Jung C, Briggs L, Southwell JE, Jia X, Weinert EE. RNase I regulates Escherichia coli 2',3'-cyclic nucleotide monophosphate levels and biofilm formation. Biochem J. 2018; 475(8):1491-506.
[40] Chauhan SS, Marotta NJ, Karls AC, Weinert EE. Binding of 2',3'-Cyclic Nucleotide Monophosphates to Bacterial Ribosomes Inhibits Translation. ACS Cent Sci. 2022; 8(11):1518-26.
[41] Ilinskaya ON, Mahmud RS. Ribonucleases as antiviral agents. Mol Biol. 2014; 48(5):615-23.
[42] Andreeva IS, Mazurkova NA, Zakabunin AI, Puchkova LI, Filippova EI, Safatov AS. Evaluation of the Effectiveness of Metabolites of Bacterial Strains Bacillus thuringiensis against Human Influenza Virus A/Aichi/2/68 (H3N2) In Vitro and In Vivo. Bull Exp Biol Med. 2020; 169(5):653-6.
[43] Xu SY, Fomenkov A, Chen TH, Yigit E. Expression of Human ACE2 N-terminal Domain, Part of the Receptor for SARS-CoV-2, in Fusion With Maltose-Binding Protein, E. coli Ribonuclease I and Human RNase A. Front Microbiol. 2021; 12:660149.
[44] Chakravorty S, Bhattacharya S, Bhattacharya D, Sarkar S, Gachhui R. Kombucha: A Promising Functional Beverage Prepared From Tea. In Non-Alcoholic Beverages, 6: The Science of Beverages (eds Grumezescu, A.M. & Holban, A.M.), 285-327 (Woodhead Publishing, 2019).