Biopolym. Cell. 2023; 39(1):24-32.
Bioinformatics
Computational Modeling of the Nanocomposite Complex of EMAP II Cytokine and TiO2 Nanoparticles
1Futornyi D. D., 1Lozhko D. M., 1Kornelyuk O. I.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03143

Abstract

Aim. Computational modeling of the complex of endothelial monocyte activating polypeptide II (EMAP II) with TiO2 nanoparticle. Since the environment of malignant cells may be characterized by a low pH, TiO2 nanoparticles will be able to release the bound compound under the pH changes. This allows considering the TiO2 nanoparticles as means for the targeted EMAP II delivery. Methods. Computational modeling of the complexes of EMAP II with TiO2 using molecular docking approach, characterization of complexes. Results. Spatial structures of the complexes of EMAP II protein with TiO2 nanoparticles have been modeled and analyzed. The results obtained by EMAP II cytokine docking against a 5 nm TiO2 nanoparticle indicated that TiO2 nanoparticles are likely to prevent the formation of aggregates by blocking the unstructured 34DVGEIAPR41 loop and the hydrophobic tryptophan "pocket" in EMAP II structure. Also, TiO2 nanoparticles are likely to reduce the conformational flexibility of EMAP II molecule by involving a significant part of amino acid residues in the formation of the nanocomposite complex. Conclusion. In the complex of EMAP II cytokine with 5 nm TiO2 nanoparticles, the binding of TiO2 to areas on the protein surface responsible for the formation of protein aggregates can prevent the aggregation and stabilize the structure of EMAP II in solution.
Keywords: cytokine, EMAP II, nanoparticle, titanium dioxide, TiO2, computational modeling, molecular docking

References

[1] Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015; 93:52-79.
[2] Mukherjee A, Madamsetty VS, Paul MK, Mukherjee S. Recent Advancements of Nanomedicine towards Antiangiogenic Therapy in Cancer. Int J Mol Sci. 2020; 21(2):455.
[3] Rajh T, Dimitrijevic NM, Bissonnette M, Koritarov T, Konda V. Titanium dioxide in the service of the biomedical revolution. Chem Rev. 2014; 114(19):10177-216.
[4] Zhang D, Zhang H, Nie J, Yang J. Synthesis and self-assembly behavior of pH-responsive amphiphilic copolymers containing ketal functional groups. Polym Int. 2010; 59(7):967-74.
[5] Kato Y, Ozawa S, Miyamoto C, Maehata Y, Suzuki A, Maeda T, Baba Y. Acidic extracellular microenvironment and cancer. Cancer Cell Int. 2013; 13(1):89.
[6] Xiong XB, Ma Z, Lai R, Lavasanifar A. The therapeutic response to multifunctional polymeric nano-conjugates in the targeted cellular and subcellular delivery of doxorubicin. Biomaterials. 2010; 31(4):757-68.
[7] Berger AC, Alexander HR, Wu PC, Tang G, Gnant MF, Mixon A, Turner ES, Libutti SK. Tumour necrosis factor receptor I (p55) is upregulated on endothelial cells by exposure to the tumour-derived cytokine endothelial monocyte-activating polypeptide II (EMAP-II). Cytokine. 2000; 12(7):992-1000.
[8] Lal CV, Schwarz MA. Vascular mediators in chronic lung disease of infancy: role of endothelial monocyte activating polypeptide II (EMAP II). Birth Defects Res A Clin Mol Teratol. 2014; 100(3):180-8.
[9] Reznikov AG, Chaykovskaya LV, Polyakova LI, Kornelyuk AI. Antitumor effect of endothelial monocyte-activating polypeptide-II on human prostate adenocarcinoma in mouse xenograft model. Exp Oncol. 2007; 29(4):267-71.
[10] Reznikov AG, Chaykovskaya LV, Polyakova LI, Kornelyuk AI, Grygorenko VN. Cooperative antitumor effect of endothelial-monocyte activating polypeptide II and flutamide on human prostate cancer xenografts. Exp Oncol. 2011; 33(4):231-4.
[11] Kolomiiets LA, Lozhko DM, Chunikhin OYu, Zayets VN, Gordovska NV, Kornelyuk AI. Influence of the dextran 70 on aggregation antitumor cytokine EMAP II. Microbiol Biotechnol. 2019; 3(47):6-18.
[12] Kolomiiets LA, Vorobyova NV, Lozhko DM, Zayets VM, Kornelyuk AI. Stabilization of AIMP1/p43 and EMAP II recombinant proteins in the complexes with polysaccharide dextran-70. Pharmacol Rep. 2020; 72(1):238-45.
[13] Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011; 44(6),1272-6.
[14] Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004; 25(13):1605-12.
[15] Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 2005; 33(Web Server issue):W363-7.
[16] Xu D, Zhang Y. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys J. 2011; 101(10):2525-34.
[17] Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr. 2010; 66(Pt 1):12-21.
[18] Levanets OV, Naidenov VG, Odynets KA, Woodmaska MI, Matsuka GKh, Kornelyuk AI. Homology of C-terminal non-catalytic domain of mammalian tyrosyl-tRNA synthetase with cylokine EMAP II and non-catalytic domains of methionyl- and phenylalanyl-tRNA synthetases. Biopolym Cell. 1997; 13(6):474-8.
[19] Kornelyuk AI, Tas MPR, Dubrovsky AL, Murray JC. Cytokine activity of the non-catalytic EMAP-2-like domain of mammalian tyrosyl-tRNA synthetase. Biopolym Cell. 1999; 15(2):168-172.
[20] Ivakhno SS, Kornelyuk AI. Cytokine-like activities of some aminoacyl-tRNA synthetases and auxiliary p43 cofactor of aminoacylation reaction and their role in oncogenesis. Exp Oncol. 2004; 26(4):250-5.
[21] Ranjan S, Dasgupta N, Sudandiradoss C, Ramalingam C, Kumar A. Titanium dioxide nanoparticle-protein interaction explained by docking approach. Int J Nanomedicine. 2018; 13(T-NANO 2014 Abstracts):47-50.
[22] Zhang H, Wang C, Chen B, Wang X. Daunorubicin-TiO2 nanocomposites as a "smart" pH-responsive drug delivery system. Int J Nanomedicine. 2012; 7:235-42.
[23] Cheng L, Yang L, Meng F, Zhong Z. Protein Nanotherapeutics as an Emerging Modality for Cancer Therapy. Adv Healthc Mater. 2018; 7(20):e1800685.