Biopolym. Cell. 2023; 39(1):14-23.
Molecular Biomedicine
The evidence of potential tumor suppressor properties of TAGLN in vitro
1Gerashchenko G. V., 1Zaharuk O. A., 1Kashuba V. I.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03143

Abstract

Aim. To prove potential tumor-suppressor properties of TAGLN in baculovirus expression system in vitro. Methods. TAGLN cloning into baculovirus expression system. Cell line transduction of recombinant baculoviruses (PC3, PNT2, LNCaP, HEK293). Cell viability and fluorescent microscopy detection to investigate the qualitative and quantitative cell’s characteristics. Relative gene expression of TAGLN, MKI67 and CASP3 investigation by a quantitative RT-PCR. Results. Transduction of AcGFP-TAGLN resulted in increased cell death on 24 and 48 hours after transduction in all cell lines compared to the virus-free groups. Fluorescence microscopy confirmed massive cell death of transduced cell lines with TAGLN. The study of TAGLN relative gene expression after AcGFP-TAGLN transduction has shown a significant increase in TAGLN expression in the PC3 and PNT2 cell lines. Increased CASP3 expression in PNT2 cells upon AcGFP-TAGLN transduction was detected. Conclusions. The effect of TAGLN administration on cell survival of both normal and cancer cell lines was shown. This confirms the evidence of the potential tumor suppressor function of TAGLN by a direct action on the tumor cells. Increased expression of CASP3 in PNT2 cells and the absence of this effect in PC3 cells upon TAGLN transduction indicate different mechanisms of cell death. These facts require further research.
Keywords: tumor suppressor genes, TAGLN, cell lines, recombinant baculoviruses, relative gene expression

References

[1] Kontomanolis EN, Koutras A, Syllaios A, Schizas D, Mastoraki A, Garmpis N, Diakosavvas M, Angelou K, Tsatsaris G, Pagkalos A, Ntounis T, Fasoulakis Z. Role of Oncogenes and Tumor-suppressor Genes in Carcinogenesis: A Review. Anticancer Res. 2020; 40(11):6009-15.
[2] Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022; 12(1):31-46.
[3] Jia P, Zhao Z. Characterization of Tumor-Suppressor Gene Inactivation Events in 33 Cancer Types. Cell Rep. 2019; 26(2):496-506.e3.
[4] Gerashchenko GV, Gordiyuk VV, Kashuba VI. Genetic and epigenetic alterations of human chromosome 3, investigated by NotI-microarrays in seven types of epithelial cancers. Biopolym. Cell. 2018; 34(4):303-12. https://
[5] Wang LH, Wu CF, Rajasekaran N, Shin YK. Loss of Tumor Suppressor Gene Function in Human Cancer: An Overview. Cell Physiol Biochem. 2018; 51(6):2647-93.
[6] Liu Y, Hu X, Han C, Wang L, Zhang X, He X, Lu X. Targeting tumor suppressor genes for cancer therapy. Bioessays. 2015; 37(12):1277-86.
[7] Morris LG, Chan TA. Therapeutic targeting of tumor suppressor genes. Cancer. 2015; 121(9):1357-68.
[8] Fatemian T, Chowdhury EH. Targeting oncogenes and tumor suppressors genes to mitigate chemoresistance. Curr Cancer Drug Targets. 2014; 14(7):599-609.
[9] Gao L, Wu ZX, Assaraf YG, Chen ZS, Wang L. Overcoming anti-cancer drug resistance via restoration of tumor suppressor gene function. Drug Resist Updat. 2021; 57:100770.
[10] Rosenberg EE, Prudnikova TY, Gerashchenko GV, Grigorieva EV, Kashuba VI. Search for genes - potential markers of aggressiveness and metastasis for human prostate cancer. Biopolym Cell. 2013; 29(6):499-505. doi: 10.7124/bc.000840
[11] Rosenberg EE, Gerashchenko GV, Kashuba VI [Comparative analysis of gene expression in normal and cancer human prostate cell lines]. Ukr Biochem J. 2014; 86(2):119-28. Ukrainian. doi: 10.15407/ubj86.02.119
[12] Rosenberg EE, Gerashchenko GV, Hryshchenko NV, Mevs LV, Nekrasov KA, Lytvynenko RA, Vitruk YV, Gryzodub OP, Stakhovsky EA, Kashuba VI. Expression of cancer-associated genes in prostate tumors. Exp Oncol. 2017; 39(2):131-7.
[13] Assinder SJ, Stanton JA, Prasad PD. Transgelin: an actin-binding protein and tumour suppressor. Int J Biochem Cell Biol. 2009; 41(3):482-6.
[14] Li Q, Shi R, Wang Y, Niu X. TAGLN suppresses proliferation and invasion, and induces apoptosis of colorectal carcinoma cells. Tumour Biol. 2013; 34(1):505-13.
[15] Prasad PD, Stanton JA, Assinder SJ. Expression of the actin-associated protein transgelin (SM22) is decreased in prostate cancer. Cell Tissue Res. 2010; 339(2):337-47.
[16] Wu X, Dong L, Zhang R, Ying K, Shen H. Transgelin overexpression in lung adenocarcinoma is associated with tumor progression. Int J Mol Med. 2014; 34(2):585-91.
[17] Fu J, Wang X, Yue Q. Functional loss of TAGLN inhibits tumor growth and increases chemosensitivity of non-small cell lung cancer. Biochem Biophys Res Commun. 2020; 529(4):1086-93.
[18] Elsafadi M, Manikandan M, Almalki S, Mahmood A, Shinwari T, Vishnubalaji R, Mobarak M, Alfayez M, Aldahmash A, Kassem M, Alajez NM. Transgelin is a poor prognostic factor associated with advanced colorectal cancer (CRC) stage promoting tumor growth and migration in a TGFβ-dependent manner. Cell Death Dis. 2020; 11(5):341.
[19] Solomko AP, Zaharuk OA, Chaschina LI, Strokovskaya LI. Baculovirus vectors in experimental gene- and vaccine therapy. Biopolym. Cell. 2011; 27(3):167-80.
[20] Vagyna IN, Zaharuk OA, Strokovska LI, Vagyn YV, Kashuba VI. Mouse embryonic fibroblasts expressing IFNβ or IL-21 inhibit proliferation of melanoma cells in vitro. Biopolym. Cell. 2016; 32(6):433-41.
[21] Vagyna IN, Anopriyenko OV, Zaharuk OA, Gorchev VF, Strokovska LI, Solomko AP. Efficient gene delivery into mammalian cells by baculovirus vector in vitro. Biopolym. Cell. 2008; 24(6):508-12.
[22] Strober W. Trypan Blue Exclusion Test of Cell Viability. Curr Protoc Immunol. 2015; 111:A3.B.1-A3.B.3.
[23] Gerashchenko GV, Grygoruk OV, Kononenko OA, Gryzodub OP, Stakhovsky EO, Kashuba VI. Expression pattern of genes associated with tumor microenvironment in prostate cancer. Exp Oncol. 2018; 40(4):315-22.
[24] Gerashchenko GV, Kononenko OA, Bondarenko YuM, Stakhovsky EO, Tkachuk ZYu, Tukalo MA, Kashuba VI. Expresion paterns of various PDCD1 and PDL1 isoforms in prostate tumors. Biopolym. Cell. 2022; 38(3):169-85.
[25] Tsuji-Tamura K, Morino-Koga S, Suzuki S, Ogawa M. The canonical smooth muscle cell marker TAGLN is present in endothelial cells and is involved in angiogenesis. J Cell Sci. 2021; 134(15):jcs254920.
[26] Yin LM, Ulloa L, Yang YQ. Transgelin-2: Biochemical and Clinical Implications in Cancer and Asthma. Trends Biochem Sci. 2019; 44(10):885-96.
[27] Dvorakova M, Nenutil R, Bouchal P. Transgelins, cytoskeletal proteins implicated in different aspects of cancer development. Expert Rev Proteomics. 2014; 11(2):149-65.
[28] Zhou L, Zhang R, Zhang L, Sun Y, Yao W, Zhao A, Li J, Yuan Y. Upregulation of transgelin is an independent factor predictive of poor prognosis in patients with advanced pancreatic cancer. Cancer Sci. 2013; 104(4):423-30.
[29] Bu J, Bu X, Liu B, Chen F, Chen P. Increased Expression of Tissue/Salivary Transgelin mRNA Predicts Poor Prognosis in Patients with Oral Squamous Cell Carcinoma (OSCC). Med Sci Monit. 2015; 21:2275-81.
[30] Shu YN, Zhang F, Bi W, Dong LH, Zhang DD, Chen R, Lv P, Xie XL, Lin YL, Xue ZY, Li H, Miao SB, Zhao LL, Wang H, Han M. SM22α inhibits vascular inflammation via stabilization of IκBα in vascular smooth muscle cells. J Mol Cell Cardiol. 2015; 84:191-9.
[31] Wu J, Wang W, Huang Y, Wu H, Wang J, Han M. Deletion of SM22α disrupts the structure and function of caveolae and T-tubules in cardiomyocytes, contributing to heart failure. PLoS One. 2022; 17(7):e0271578.
[32] Rao D, Kimler BF, Nothnick WB, Davis MK, Fan F, Tawfik O. Transgelin: a potentially useful diagnostic marker differentially expressed in triple-negative and non-triple-negative breast cancers. Hum Pathol. 2015; 46(6):876-83.
[33] Webber JP, Spary LK, Mason MD, Tabi Z, Brewis IA, Clayton A. Prostate stromal cell proteomics analysis discriminates normal from tumour reactive stromal phenotypes. Oncotarget. 2016; 7(15):20124-39.
[34] Meng X, Dang T, Chai J. From Apoptosis to Necroptosis: The Death Wishes to Cancer. Cancer Control. 2021; 28:10732748211066311.
[35] Abaza A, Vasavada AM, Sadhu A, Valencia C, Fatima H, Nwankwo I, Anam M, Maharjan S, Amjad Z, Khan S. A Systematic Review of Apoptosis in Correlation With Cancer: Should Apoptosis Be the Ultimate Target for Cancer Treatment? Cureus. 2022; 14(8):e28496.
[36] Jan R, Chaudhry GE. Understanding Apoptosis and Apoptotic Pathways Targeted Cancer Therapeutics. Adv Pharm Bull. 2019; 9(2):205-18.
[37] Radogna F, Dicato M, Diederich M. Cancer-type-specific crosstalk between autophagy, necroptosis and apoptosis as a pharmacological target. Biochem Pharmacol. 2015; 94(1):1-11.