Biopolym. Cell. 2022; 38(4):257-277.
Bioorganic Chemistry
Anticancer cytotoxicity of indole-thiazolidinone hybrids, in silico study of mechanisms of their action
- Danylo Halytsky Lviv National Medical University
69, Pekarska Str., Lviv, Ukraine, 79010 - Institute of Cell Biology, NAS of Ukraine
14/16, Drahomanov Str., Lviv, Ukraine, 79005 - Poznan University of Life Sciences
28, Wojska Polskiego, Poznań, Poland, 60-637 - National Veterinary Research Institute
57, Aleja Partyzantów Puławy, Poland, 24-100 - Poznan University of Medical Sciences
6, Grunwaldzka, Poznań, Poland, 60-780
Abstract
Aim. The directed design and synthesis of new hybrid molecules containing [6+5]-heterocycles and thiazolidinone fragment, and their evaluation as potent anticancer agents. Methods. Organic synthesis, biological in vitro assays, SAR analysis, molecular docking, pharmacophore modelling. Results. A series of novel synthetic hybrid thiazolidinone-indole-carboxylates was designed, synthesized, and screened for their toxic activity towards the human hepatocarcinoma (HepG2), human glioblastoma (U251), human breast adenocarcinoma (MCF-7), and human promyelocytic leukemia (HL-60) cell lines. The lines of hepatocarcinoma, glioblastoma and breast adenocarcinoma were weakly sensitive to the studied compounds, the viability of the human promyelocytic leukemia cell line HL-60 was inhibited by 5-fluoro-3-[2-(4-hydroxyanilino)-4-oxo-thiazol-5-ylidene]methyl]-1H-indole-2-carboxylate at the micromolar concentration IC50 = 8.36 μM. The cytotoxic action of this compound tested on a panel of cancer cell lines showed that the cell lines of leukemia, melanoma, and ovarian cancer were the most sensitive to it. Conclusions. The in vitro screening of biological effects of the synthesized compounds allowed identifying a hit-compound 2c with high antileukemic action and low toxicity towards pseudonormal murine fibroblasts (Balb/c3T3). In general, 4-thiazolidinone-indolecarboxylate 2c inhibited by > 50% the viability of 21 tumor cell lines. The in silico studies of putative binding mechanisms of the hit-compound 2c showed its high affinity to the colchicine site of cytoskeletal protein tubulin.
Keywords: 1H-indole, thiazolidine, synthesis, anticancer activity, SAR analysis, in silico study
Full text: (PDF, in English)
References
[1]
Kryshchyshyn A, Kaminskyy D, Karpenko O, Gzella A, Grellie, P, Lesyk R. Thiazolidinone/thiazole based hybrids-New class of antitrypanosomal agents. Eur J Med Chem. 2019; 174:292-308.
[2]
Kryshchyshyn-Dylevych A, Garazd M, Karkhut A, Polovkovych S, Lesyk R. Synthesis and anticancer activity evaluation of 3-(4-oxo-2-thioxothiazolidin-5-yl)-1H-indole-carboxylic acids derivatives. Synth Commun. 2020; 50(18):2830-8.
[3]
Mendel D, Laird D, Xin X, Louie S, Christensen J, Li G, Schreck R, Abrams T, Ngai T, Lee T, Murray L, Carver J, Chan E, Moss K, Haznedar J, Sukbuntherng J, Blake R, Sun L, Tang C, Miller T, Shirazian S, McMahon G, Cherrington, J. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res. 2003; 9(1):327-37.
[4]
Haddad J. The immunopharmacologic potential of Semaxanib and new generation directed therapeutic drugs: Receptor tyrosine kinase regulation with anti-tumorigenensis/angiogenesis properties. Saudi Pharm J. 2012; 20(2):103-23.
[5]
Laird D, Vajkoczy P, Shawver L, Thurnher A, Liang C, Mohammadi M, Schlessinger J, Ullrich A, Hubbard S, Blake R, Fong A, Strawn L, Sun L, Tang C, Hawtin R, Tang F, Shenoy N, Hirth P, McMahon G, Cherrington J. SU6668 is a potent antiangiogenic and antitumor agent that induces regression of established tumors. Cancer Res. 2000; 60(15):4152-60.
[6]
Patil R, Patil S, Beaman K, Patil S. Indole Molecules as Inhibitors of Tubulin Polymerization: potential New Anticancer Agents, an Update (2013-2015). Future Med Chem. 2016; 8:1291-316.
[7]
Granchi C, Roy S, De Simone A, Salvetti I, Tuccinardi T, Martinelli A, Macchia M, Lanza M, Betti L, Giannaccini G, Lucacchini A, Giovannetti E, Sciarrillo R, Peters G, Minutolo F. N-Hydroxyindole-Based Inhibitors of Lactate Dehydrogenase against Cancer Cell Proliferation. Eur J Med Chem. 2011; 46:5398-407.
[8]
Fouad M, Zaki M, Lotfy R, Walaa M. Insight on a new indolinone derivative as an orally bioavailable lead compound against renal cell carcinoma. Bioorg Chem. 2021; 112:104985.
[9]
Kryshchyshyn-Dylevych A, Radko L, Finiuk N, Garazd M, Kashchak N, Posyniak A, Niemczuk K, Stoika, Lesyk R. Synthesis of novel indole-thiazolidinone hybrid structures as promising scaffold with anticancer potential. Bioorg Med Chem. 2021; 50:116453.
[10]
Subtelna I, Kryshchyshyn‐Dylevych A, Jia R, Lelyukh M, Ringler A, Kubicek S, Zagrijtschuk O, Kralovics R, Lesyk R. 5‐Arylidene‐2‐(4‐hydroxyphenyl)aminothiazol‐4(5H)‐ones with selective inhibitory activity against some leukemia cell lines. Arch Pharm. 2021; 354(4):2000342.
[11]
Szychowski K, Skóra B, Kryshchyshyn-Dylevych A, Kaminskyy D, Rybczyńska-Tkaczyk K, Lesyk R, Gmiński J. Induction of Cyp450 enzymes by 4-thiazolidinone-based derivatives in 3T3-L1 cells in vitro. Naunyn-Schmiedeb Arch Pharmacol. 2021; 394(5):915-27.
[12]
Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D, Hose C, Langley J, Cronise P, Vaigro-Wolff A, Gray-Goodrich M, Campbell H, Mayo J, Boyd M. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J Natl Cancer Inst. 1991; 83:757-66.
[13]
Boyd M, Paull K. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Dev Res. 1995; 34:91-109.
[14]
Boyd M. The NCI In Vitro Anticancer Drug Discovery Screen in: Teicher BA. Cancer Drug Discovery and Development, Vol. 2, Humana Press, Totowa, New York, 1997: 23-43.
[15]
Li Q, Yin X, Wang W, Zhan M, Zhao B, Hou Z, Wang J. The effects of buthionine sulfoximine on the proliferation and apoptosis of biliary tract cancer cells induced by cisplatin and gemcitabine. Oncol Lett. 2016; 11(1):474-80.
[16]
Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay. J Immunol Methods. 1983; 65(1-2):55-63.
[17]
Radko L, Stypuła-Trębas S, Posyniak A, Zyro D, Ochocki J. Silver(I) complexes of the pharmaceutical agents metronidazole and 4-hydroxymethylpyridine: comparison of cytotoxic profile for potential clinical application. Molecules. 2019; 24(10):1949.
[18]
Borenfreund E, Puerner J. Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol Lett. 1985; 24(2-3):119-124.
[19]
Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of dye binding. Anal Biochem. 1976; 72(1-2):248-54.
[20]
Korzeniewski C, Calleawert D. An enzyme-release assay for natural cytotoxicity. J Immunol Method. 1983; 64(3): 313-20.
[21]
Badisa R, Darling-Reed S, Joseph P, Cooperwood J, Latinwo L, Goodman C. Selective cytotoxic activities of two novel synthetic drugs on human breast carcinoma MCF-7 cells. Anticancer Res. 2009; 29(8):2993-6.
[22]
Peña-Morán OA, Villarreal ML, Álvarez-Berber L, Meneses-Acosta A, Rodríguez-López V. Cytotoxicity, Post-Treatment Recovery, and Selectivity Analysis of Naturally Occurring Podophyllotoxins from Bursera fagaroides var. fagaroides on Breast Cancer Cell Lines. Molecules. 2016;21(8):1013.
[23]
Morris G, Goodsell D, Halliday R, Huey R, Hart W, Belew R, Olson A. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem. 1998; 19(14):1639-62.
[24]
Bold G, Schnell C, Furet P, McSheehy P, Brüggen J, Mestan J, Manley P, Drückes P, Burglin M, Dürler U, Loretan J, Reuter R, Wartmann M, Theuer A, Bauer-Probst B, Martiny-Baron G, Allegrini P, Goepfert A, Wood J, Littlewood-Evans, A. A novel potent oral series of VEGFR2 inhibitors abrogate tumor growth by inhibiting angiogenesis. J Med Chem. 2016; 59(1):132-46.
[25]
Chen H, Deng S, Albadari N, Yun M, Zhang S, Li Y, Ma D, Parke D, Yang L, Seagroves T, White S, Miller D, Li, W. Design, synthesis, and biological evaluation of stable colchicine-binding site tubulin inhibitors 6-Aryl-2-benzoyl-pyridines as potential anticancer agents. J Med Chem. 2021; 64(16):12049-74.
[26]
Debs G, Cha M, Liu X, Huehn A, Sindelar C. Dynamic and asymmetric fluctuations in the microtubule wall captured by high-resolution cryoelectron microscopy. Proc Natl Acad Sci. 2020; 117(29):16976-84.
[27]
Waight A, Bargsten K, Doronina S, Steinmetz M, Sussman D, Prota A. Structural basis of microtubule destabilization by potent auristatin anti-mitotics. PloS One. 2016; 11(8):e0160890.
[28]
Tang J, Wang Y, Zhou H, Ye Y, Talukdar M, Fu Z, Liu Z, Li J, Neculai D, Gao J, Huang H. Sunitinib inhibits RNase L by destabilizing its active dimer conformation. Biochem J. 2020; 477(17):3387-99.
[29]
Gajiwala K, Wu J, Christensen J, Deshmukh G, Diehl W, DiNitto J, English J, Greig M, He Y-A, Jacques S, Lunney E, McTigue M, Molina D, Quenzer T, Wells P, Yu X, Zhang Y, Zou A, Emmett M, Marshall A, Zhang H-M, Demetri G. KIT kinase mutants show unique mechanisms of drug resistance to imatinib and sunitinib in gastrointestinal stromal tumor patients. Proc Natl Acad Sci USA. 2009; 106(5):1542-7.
[30]
Zhang J, Adrián F, Jahnke W, Cowan-Jacob S, Li A, Iacob R, Sim T, Powers J, Dierks C, Sun F, Guo G-R, Ding Q, Okram B, Choi Y, Wojciechowski A, Deng X, Liu G, Fendrich G, Strauss A, Vajpai N, Grzesiek S, Tuntland T, Liu Y, Bursulaya B, Azam M, Manley P, Engen J, Daley G, Warmuth M, Gray N. Targeting Bcr-Abl by combining allosteric with ATP-binding-site inhibitors. Nature. 2010; 463(7280): 501-6.
[31]
Morris G, Huey R, Lindstrom W, Sanner M, Belew R, Goodsell D, Olson A. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009; 30(16):2785-91.
[32]
Pettersen E, Goddard T, Huang C, Couch G, Greenblatt D, Meng E, Ferrin T. UCSF chimera - a visualization system for exploratory research and analysis. J Comput Chem. 2004; 25(13):1605-12.
[33]
Wolber G, Langer T. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model. 2005; 45(1):160-9.
[34]
Kaminskyy D, Kryshchyshyn A, Lesyk R. Recent developments with rhodanine as a scaffold for drug discovery. Expert Opin Drug Discov. 2017; 12(12):1233-52.
[35]
Kryshchyshyn A, Kaminskyy D, Roman O, Kralovics R, Karpenko O, Lesyk R. Synthesis and anti-leukemic activity of pyrrolidinedione-thiazolidinone hybrids. Ukr Biochem J. 2020; 92(2):108-19.
[36]
Subtel'na I, Atamanyuk D, Szymanska E, Kiec-Kononowicz K, Zimenkovsky B, Vasylenko O, Gzella A, Lesyk R. Synthesis of 5-arylidene-2-amino-4-azolones and evaluation of their anticancer activity. Bioorg Med Chem. 2010; 14:5090-102.
[37]
Mobinikhaledi A, Amiri A. Natural eutectic salts catalyzed one-pot synthesis of 5-arylidene-2-imino-4-thiazolidinones. Res Chem Intermed. 2013; 39:1491-8.
[38]
Havrylyuk D, Zimenkovsky B, Vasylenko O, Gzella A, Lesyk R. Synthesis of new 4-thiazolidinone-, pyrazoline-, and isatin-based conjugates with promising antitumor activity. J Med Chem. 2012; 55:8630-41.
[39]
Kaminskyy D, Den Hartog G, Wojtyra M, Lelyukh M, Gzella A, Bast A, Lesyk R. Antifibrotic and anticancer action of 5-ene amino/iminothiazolidinones. Eur J Med Chem. 2016; 112:180-95.
[40]
Nowaczyk A, Kowiel M, Gzella A, Fijałkowski Ł, Horishny V, Lesyk R. Conformational space and vibrational spectra of 2-[(2,4-dimethoxyphenyl)amino]-1,3-thiazolidin-4-one. J Mol Model. 2014; 20(8):2366.
[41]
Kaminskyy D, Subtel'na I, Zimenkovsky B, Karpenko O, Gzella A, Lesyk R. Synthesis and evaluation of anticancer activity of 5-ylidene-4-aminothiazol-2 (5H)-one derivatives. Med Chem. 2015; 11(6):517-30.
[42]
Pyrih A, Jaskolski M, Gzella A, Lesyk R. Synthesis, structure and evaluation of anticancer activity of 4-amino-1,3-thiazolinone/pyrazoline hybrids. J Mol Struct. 2021; 1224:129059.
[43]
Skóra B, Lewińska A, Kryshchyshyn-Dylevych A, Kaminskyy D, Lesyk R. Szychowski K. Evaluation of anticancer and antibacterial activity of four 4-thiazolidinone-based derivatives. Molecules. 2022; 27(3):894.
[44]
Rehulka J, Subtelna I, Kryshchyshyn‐Dylevych A, Cherniienko A, Ivanova A, Matveieva M, Polishchuk P, Gurska S, Hajduch M, Zagrijtschuk O, Dzubak P, Lesyk R. Anticancer 5‐arylidene‐2‐(4‐hydroxyphenyl) aminothiazol‐4(5H)‐ones as tubulin inhibitors. Arch Pharm. 2022;355(12) e2200419.