Biopolym. Cell. 2022; 38(4):231-241.
Molecular Biomedicine
Study of the interaction between macrophages and human umbilical cord MSCs in vivo on the model of perotonitis in mice
1, 2Pikus P. O., 1, 2Rymar S. Y., 2Shuvalova N. S., 1, 2Kordium V. A.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03143
  2. State Institute of Genetic and Regenerative Medicine, NAMS of Ukraine
    67, Vyshhorodska Str., Kyiv, Ukraine, 04114

Abstract

Mesenchymal stem cells (MSCs) have unique properties that ensure the regeneration of damaged tissues, which allows using them in the cell therapy of various diseases. The realization of these properties is mainly related to the interaction of MSCs with macrophages. Aim. To study the interaction of the human umbilical cord MSCs with macrophages in vivo using a model of sterile inflammation of the peritoneal cavity in mice. Methods. Cytological methods for assessing acute inflammation of the peritoneal cavity of mice, isolation and cultivation of the human umbilical cord MSCs, study of the expression of the MSC surface markers by flow cytometry, determination of the phagocytic activity of mononuclear cells of peritoneal cavity, isolation of mononuclear RNA, RT-PCR, methods of statistical analysis. Results. The dynamics of the development of the MSCs’ therapeutic effect after their transplantation into the peritoneal cavity of mice was studied; a method for assessing the therapeutic activity of various MSC preparations was developed; the fast polarization of macrophages to the M2 state after the injection of MSCs was shown, by studying the phagocytic activity of macrophages and expression of the IL-10 gene. Conclusions. The most effective method to increase the therapeutic potential of MSCs is preconditioning with low doses of H2O2.
Keywords: MSCs, macrophages, peritonitis

References

[1] Bernardo ME, Fibbe WE. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell. 2013;13(4):392-402.
[2] Weiss ARR, Dahlke MH. Immunomodulation by Mesenchymal Stem Cells (MSCs): mechanisms of action of living, apoptotic, and dead MSCs. Front Immunol. 2019;10:1191.
[3] Seshareddy K, Troyer D, Weiss ML. Method to isolate mesenchymal-like cells from Wharton's Jelly of umbilical cord. Methods Cell Biol. 2008;86:101-19. doi: 10.1016/S0091-679X(08)00006-X.
[4] Caramanis C, Varonos DD. The influence of acetylsalicylic acid, phenylbutazone, indomethacin, and flufenamic acid on the kinetics of leucocytes during acute inflammation. Arch Toxicol Suppl. 1980;4:485-91.
[5] Cain DW, O'Koren EG, Kan MJ, Womble M, Sempowski GD, Hopper K, Gunn MD, Kelsoe G. Identification of a tissue-specific, C/EBPβ-dependent pathway of differentiation for murine peritoneal macrophages. J Immunol. 2013;191(9):4665-75.
[6] Chen HY, Weng IC, Li CS, Wan L, Liu FT. Examination of galectins in phagocytosis. Methods Mol Biol. 2015;1207:201-13.
[7] Seshareddy K, Troyer D, Weiss ML. Method to isolate mesenchymal-like cells from Wharton's Jelly of umbilical cord. Methods Cell Biol. 2008;86:101-19.
[8] Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-7.
[9] Kim J, Hematti P. Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol. 2009;37(12):1445-53.
[10] Stevens HY, Bowles AC, Yeago C, Roy K. Molecular crosstalk between macrophages and mesenchymal stromal Cells. Front Cell Dev Biol. 2020;8:600160.
[11] Vasandan AB, Jahnavi S, Shashank C, Prasad P, Kumar A, Prasanna SJ. Human Mesenchymal stem cells program macrophage plasticity by altering their metabolic status via a PGE2-dependent mechanism. Sci Rep. 2016;6:38308.
[12] Manole E, Niculite C, Lambrescu IM, Gaina G, Ioghen O, Ceafalan LC, Hinescu ME. Macrophages and Stem Cells-Two to Tango for Tissue Repair? Biomolecules. 2021;11(5):697.
[13] Lee KY. M1 and M2 polarization of macrophages: a mini-review. Med Biol Sci Eng. 2019; 2(1):1-5.
[14] Orecchioni M, Ghosheh Y, Pramod AB, Ley K. Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2(LPS-) vs. alternatively activated macrophages. Front Immunol. 2019;10:1084.
[15] Gratchev A, Kzhyshkowska J, Utikal J, Goerdt S. Interleukin-4 and dexamethasone counterregulate extracellular matrix remodelling and phagocytosis in type-2 macrophages. Scand J Immunol. 2005;61(1):10-7.
[16] Tarique AA, Logan J, Thomas E, Holt PG, Sly PD, Fantino E. Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages. Am J Respir Cell Mol Biol. 2015;53(5):676-88.
[17] Lee DY, Lim JS, Cho KA. Differential activation of macrophages based on their environment in advanced Age. Chonnam Med J. 2020;56(1):12-9.
[18] Ißleib C, Kurz S, Scholl S, Amberg B, Spohn J. Plasticity of proinflammatory macrophages depends on their polarization stage during human MSC immunomodulation - an in vitro study using THP-1 and human primary macrophages. Immuno. 2021; 1 (4): 518-28.
[19] Hu C, Li L. Preconditioning influences mesenchymal stem cell properties in vitro and in vivo. J Cell Mol Med. 2018;22(3):1428-42.
[20] Bystrom J, Evans I, Newson J, Stables M, Toor I, van Rooijen N, Crawford M, Colville-Nash P, Farrow S, Gilroy DW. Resolution-phase macrophages possess a unique inflammatory phenotype that is controlled by cAMP. Blood. 2008;112(10):4117-27.
[21] Ferreira JR, Teixeira GQ, Santos SG, Barbosa MA, Almeida-Porada G, Gonçalves RM. Mesenchymal stromal cell secretome: influencing therapeutic potential by cellular pre-conditioning. Front Immunol. 2018;9:2837.
[22] Ocansey DKW, Pei B, Yan Y, Qian H, Zhang X, Xu W, Mao F. Improved therapeutics of modified mesenchymal stem cells: an update. J Transl Med. 2020;18(1):42.
[23] Li S, Deng Y, Feng J, Ye W. Oxidative preconditioning promotes bone marrow mesenchymal stem cells migration and prevents apoptosis. Cell Biol Int. 2009;33(3):411-8.
[24] Guo L, Du J, Yuan DF, Zhang Y, Zhang S, Zhang HC, Mi JW, Ning YL, Chen MJ, Wen DL, Sun JH, Liu D, Zeng L, Zhang A, Jiang J, Huang H. Optimal H2O2 preconditioning to improve bone marrow mesenchymal stem cells' engraftment in wound healing. Stem Cell Res Ther. 2020;11(1):434.
[25] Tang Y, Cai B, Yuan F, He X, Lin X, Wang J, Wang Y, Yang GY. Melatonin pretreatment improves the survival and function of transplanted mesenchymal stem cells after focal cerebral ischemia. Cell Transplant. 2014;23(10):1279-91.
[26] Yun SP, Han YS, Lee JH, Kim SM, Lee SH. Melatonin rescues mesenchymal stem cells from senescence induced by the uremic toxin p-cresol via inhibiting mTOR-dependent autophagy. Biomol Ther (Seoul). 2018;26(4):389-98.
[27] Lee JH, Yoon YM, Han YS, Jung SK, Lee SH. Melatonin protects mesenchymal stem cells from autophagy-mediated death under ischaemic ER-stress conditions by increasing prion protein expression. Cell Prolif. 2019;52(2):e12545.
[28] Fujisawa K, Hara K, Takami T, Okada S, Matsumoto T, Yamamoto N, Sakaida I. Evaluation of the effects of ascorbic acid on metabolism of human mesenchymal stem cells. Stem Cell Res Ther. 2018;9(1):93.
[29] Theruvath AJ, Mahmoud EE, Wu W, Nejadnik H, Kiru L, Liang T, Felt S, Daldrup-Link HE. Ascorbic Acid and Iron Supplement Treatment Improves Stem Cell-Mediated Cartilage Regeneration in a Minipig Model. Am J Sports Med. 2021;49(7):1861-70.
[30] Hou YS, Liu LY, Chai JK, Yu YH, Duan HJ, Hu Q, Yin HN, Wang YH, Zhuang SB, Fan J, Chu WL, Ma L. Lipopolysaccharide pretreatment inhibits LPS-induced human umbilical cord mesenchymal stem cell apoptosis via upregulating the expression of cellular FLICE-inhibitory protein. Mol Med Rep. 2015;12(2):2521-8.
[31] Chu X, Xu B, Gao H, Li BY, Liu Y, Reiter JL, Wang Y. Lipopolysaccharides improve mesenchymal stem cell-mediated cardioprotection by MyD88 and stat3 signaling in a mouse model of cardiac ischemia/reperfusion injury. Stem Cells Dev. 2019;28(9):620-31.
[32] Croitoru-Lamoury J, Lamoury FM, Caristo M, Suzuki K, Walker D, Takikawa O, Taylor R, Brew BJ. Interferon-γ regulates the proliferation and differentiation of mesenchymal stem cells via activation of indoleamine 2,3 dioxygenase (IDO). PLoS One. 2011;6(2):e14698.
[33] Sivanathan KN, Gronthos S, Rojas-Canales D, Thierry B, Coates PT. Interferon-gamma modification of mesenchymal stem cells: implications of autologous and allogeneic mesenchymal stem cell therapy in allotransplantation. Stem Cell Rev Rep. 2014;10(3):351-75.