Biopolym. Cell. 2022; 38(4):215-223.
Molecular and Cell Biotechnologies
Monoclonal antibodies to Coenzyme A
1Malanchuk O. M., 1Bdzhola A. V., 1Tykhonkova I. O., 1, 2Gout I. T., 1Filonenko V. V.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03143
  2. University College London
    Gower Street, London WC1E 6BT, UK

Abstract

Aim. To generate monoclonal antibodies to Coenzyme A (CoA) with antigenic epitope specificity different to previously developed anti-CoA mAb (1F10) by introducing alternative approach for antigen preparation animal immunization. Methods. Cross-linking of CoA to Keyhole Limpet Hemocyanin (KaLH) and to Bovine serum albumin (BSA) using reversible chemical crosslinker SPDP. Hybridoma technique. Western blot analysis. Immunoprecipitation. ELISA. Results. Monoclonal antibody (A11) that specifically recognizes CoA in various immunoassays and has the same antigenic epitope specificity to existing anti-CoA mAb (1F10) has been generated. Conclusions. Application of different ways for CoA conjugation to the carrier proteins to create an antigen for immunization does not affect the antigenic epitope specificity of generated anti-CoA antibodies most probably due to the existence of only one immunogenic epitope in CoA molecule
Keywords: CoA, hybridoma technique, monoclonal antibody, SPDP crosslinking.

References

[1] Leonardi R, Zhang YM, Rock CO, Jackowski S. Coenzyme A: back in action. Prog Lipid Res. 2005;44(2-3):125-53.
[2] Davaapil H, Tsuchiya Y, Gout I. Signalling functions of coenzyme A and its derivatives in mammalian cells. Biochem Soc Trans. 2014;42(4):1056-62.
[3] Srinivasan B, Sibon OC. Coenzyme A, more than 'just' a metabolic cofactor. Biochem Soc Trans. 2014;42(4):1075-9.
[4] Theodoulou FL, Sibon OC, Jackowski S, Gout I. Coenzyme A and its derivatives: renaissance of a textbook classic. Biochem Soc Trans. 2014;42(4):1025-32.
[5] Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol. 2014;15(8):536-50.
[6] Shi L, Tu BP. Protein acetylation as a means to regulate protein function in tune with metabolic state. Biochem Soc Trans. 2014;42(4):1037-42.
[7] Perry RJ, Camporez JG, Kursawe R, Titchenell PM, Zhang D, Perry CJ, Jurczak MJ, Abudukadier A, Han MS, Zhang XM, Ruan HB, Yang X, Caprio S, Kaech SM, Sul HS, Birnbaum MJ, Davis RJ, Cline GW, Petersen KF, Shulman GI. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell. 2015;160(4):745-758.
[8] Kamphorst JJ, Chung MK, Fan J, Rabinowitz JD. Quantitative analysis of acetyl-CoA production in hypoxic cancer cells reveals substantial contribution from acetate. Cancer Metab. 2014;2:23.
[9] Schug ZT, Peck B, Jones DT, Zhang Q, Grosskurth S, Alam IS, Goodwin LM, Smethurst E, Mason S, Blyth K, McGarry L, James D, Shanks E, Kalna G, Saunders RE, Jiang M, Howell M, Lassailly F, Thin MZ, Spencer-Dene B, Stamp G, van den Broek NJ, Mackay G, Bulusu V, Kamphorst JJ, Tardito S, Strachan D, Harris AL, Aboagye EO, Critchlow SE, Wakelam MJ, Schulze A, Gottlieb E. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell. 2015;27(1):57-71.
[10] Huang J, Xu L, Huang Q, Luo J, Liu P, Chen S, Yuan X, Lu Y, Wang P, Zhou S. Changes in short-chain acyl-coA dehydrogenase during rat cardiac development and stress. J Cell Mol Med. 2015;19(7):1672-88.
[11] Kolwicz SC Jr, Olson DP, Marney LC, Garcia-Menendez L, Synovec RE, Tian R. Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure-overload hypertrophy. Circ Res. 2012;111(6):728-38.
[12] Abo Alrob O, Lopaschuk GD. Role of CoA and acetyl-CoA in regulating cardiac fatty acid and glucose oxidation. Biochem Soc Trans. 2014;42(4):1043-51.
[13] Naquet P, Pitari G, Duprè S, Galland F. Role of the Vnn1 pantetheinase in tissue tolerance to stress. Biochem Soc Trans. 2014;42(4):1094-100.
[14] Jackowski S, Leonardi R. Deregulated coenzyme A, loss of metabolic flexibility and diabetes. Biochem Soc Trans. 2014;42(4):1118-22.
[15] Colombelli C, Aoun M, Tiranti V. Defective lipid metabolism in neurodegeneration with brain iron accumulation (NBIA) syndromes: not only a matter of iron. J Inherit Metab Dis. 2015;38(1):123-36.
[16] Hayflick SJ. Defective pantothenate metabolism and neurodegeneration. Biochem Soc Trans. 2014;42(4):1063-8.
[17] Venco P, Dusi S, Valletta L, Tiranti V. Alteration of the coenzyme A biosynthetic pathway in neurodegeneration with brain iron accumulation syndromes. Biochem Soc Trans. 2014;42(4):1069-74.
[18] Tsuchiya Y, Peak-Chew SY, Newell C, Miller-Aidoo S, Mangal S, Zhyvoloup A, Bakovic J, Malanchuk O, Pereira GC, Kotiadis V, Szabadkai G, Duchen MR, Campbell M, Cuenca SR, Vidal-Puig A, James AM, Murphy MP, Filonenko V, Skehel M, Gout I. Protein CoAlation: a redox-regulated protein modification by coenzyme A in mammalian cells. Biochem J. 2017;474(14):2489-2508.
[19] Tsuchiya Y, Zhyvoloup A, Baković J, Thomas N, Yu BYK, Das S, Orengo C, Newell C, Ward J, Saladino G, Comitani F, Gervasio FL, Malanchuk OM, Khoruzhenko AI, Filonenko V, Peak-Chew SY, Skehel M, Gout I. Protein CoAlation and antioxidant function of coenzyme A in prokaryotic cells. Biochem J. 2018;475(11):1909-1937.
[20] Lashley T, Tossounian MA, Costello Heaven N, Wallworth S, Peak-Chew S, Bradshaw A, Cooper JM, de Silva R, Srai SK, Malanchuk O, Filonenko V, Koopman MB, Rüdiger SGD, Skehel M, Gout I. Extensive anti-CoA immunostaining in Alzheimer's disease and covalent modification of Tau by a key cellular metabolite Coenzyme A. Front Cell Neurosci. 2021;15:739425.
[21] Harlow E, Lane D. Using antibodies: A laboratory manual. New York: Cold Spring Harbor Lab press, 1998. 495 p.
[22] Malanchuk OM, Panasyuk GG, Serbyn NM, Gout IT, Filonenko VV. Generation and characterization of monoclonal antibodies specific to Coenzyme A. Biopolym Cell. 2015; 31(3): 187-92.