Biopolym. Cell. 2022; 38(3):186-194.
Bioinformatics
Identification of potential novel membrane drug targets of Acinetobacter baumannii ATCC 19606 using subtractive proteomics approach
- Institute of High Technologies,
Taras Shevchenko National University of Kyiv
2, korp.5, Pr. Akademika Hlushkova, Kyiv, Ukraine, 03022 - Institute of Molecular Biology and Genetics, NAS of Ukraine
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03143 - LLC "Scientific and service firm "Otava"
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03143
Abstract
Aim. To identify the potential novel membrane drug targets of Acinetobacter baumannii ATCC 19606. Methods. Clustering of paralogues was performed by USEARCH software, the identification of essential non-homologous proteins to the human proteome was done with BLASTp and Database of essential genes, determination of proteins from unique metabolic pathways was carried out using KAAS server at KEGG. The drug target novelty was estimated with DrugBank. The sub-cellular localization of the proteins was predicted with PSORTb v. 3.0.3, CELLO v. 2.5 and BUSCA. Tertiary structures of proteins were built with trRosetta and 3D models quality was analyzed using MolProbity server. The potential binding sites were predicted with PrankWeb, BIOVIA Discovery studio 2021 visualizer and Caver analyst 2.0. Results. Six potential novel membrane drug targets were identified within the Acinetobacter baumannii ATCC 19606 proteome such as rod shape-determining protein RodA, DedA family protein, undecaprenyl-diphosphate phosphatase, putative lipid II flippase FtsW, prolipoprotein diacylglyceryl transferase, apolipoprotein N-acyltransferase. Tertiary structures of the proteins were built and ligand-binding sites were predicted. Conclusions. The identified potential novel mem-brane-associated drug targets of Acinetobacter baumannii ATCC 19606 can be useful for further drug development in order to find novel treatments of the infectious diseases caused by Acinetobacter baumannii.
Keywords: Acinetobacter baumannii, subtractive proteomics, drug targets, membrane proteins
Full text: (PDF, in English)
References
[1]
Antunes LCS, Visca P, Towner KJ. Acinetobacter baumannii: evolution of a global pathogen. Pathog Dis., 2014; 71(3):292-301.
[2]
Long Q, Huang C, Liao P, Xie J. Proteomic insights into Acinetobacter baumannii drug resistance and pathogenesis. Crit Rev Eukaryot Gene Expr., 2013; 23(3):227-55.
[3]
Garnacho-Montero J, Amaya-Villar R. Multiresistant Acinetobacter baumannii infections: epidemiology and management. Curr Opin Infect Dis., 2010; 23(4):332-39.
[4]
Barh D, Tiwari S, Jain N, Ali A, Santon AR, Misra AN, Azevedo V, Kumar A. In silico subtractive genomics for target identification in human bacterial pathogens. Drug Dev Res. 2011; 72(2):162-77.
[5]
Hamidian M, Blasco L, Tillman LN, To J, Tomas M, Myers GSA. Analysis of complete genome sequence of Acinetobacter baumannii strain ATCC 19606 reveals novel mobile genetic elements and novel prophage. Microorganisms. 2020; 8(12):1851.
[6]
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010; 26(19):2460-1.
[7]
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. BLAST+: architecture and applications. BMC Bioinformatics. 2009; 10:421.
[8]
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990; 215(3):403-10.
[9]
Luo H, Lin Y, Gao F, Zhang CT, Zhang R. DEG 10, an update of the database of essential genes that includes both protein-coding genes and noncoding genomic elements. Nucleic Acids Res. 2013; 42:D574-80.
[10]
Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007; 35:W182-5.
[11]
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018; 46:D1074-82.
[12]
Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, Brinkman FSL. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics. 2010; 26(13):1608-15.
[13]
Yu CS, Chen YC, Lu CH, Hwang JK. Prediction of protein subcellular localization. Proteins. 2006; 64(3):643-51.
[14]
Savojardo C, Martelli PL, Fariselli P, Profiti G, Casadio R. BUSCA: an integrative web server to predict subcellular localization of proteins. Nucleic Acids Res. 2018; 46:W459-66.
[15]
Yang J, Anishchenko I, Park H, Peng Z, Ovchinnikov S, Baker D. Improved protein structure prediction using predicted interresidue orientations. Proc Natl Acad Sci. 2020; 117(3):1496-503.
[16]
Su H, Wang W, Du Z, Peng Z, Gao SH, Cheng MM, Yang J. Improved protein structure prediction using a new multi-scale network and homologous templates. Adv Sci (Weihn). 2021; 8(24):e2102592.
[17]
Du Z, Su H, Wang W, Ye L, Wei H, Peng Z, Anishchenko I, Baker D, Yang J. The trRosetta server for fast and accurate protein structure prediction. Nat Protoc. 2021; 16(12):5634-51.
[18]
Williams CJ, Headd JJ, Moriarty NW, Prisant MG, Videau LL, Deis LN, Verma V, Keedy DA, Hintze BJ, Chen VB, Jain S, Lewis SM, Arendall WB 3rd, Snoeyink J, Adams PD, Lovell SC, Richardson JS, Richardson DC. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci. 2018; 27(1):293-315.
[19]
Jendele L, Krivak R, Skoda P, Novotny M, Hoksza D. PrankWeb: a web server for ligand binding site prediction and visualization. Nucleic Acids Res. 2019; 47:W345-49.
[20]
Jurcik A, Bednar D, Byska J, Marques SM, Furmanova K, Daiel L, Kokkonen P, Brezovsky J, Strnad O, Stourac J, Pavelka A, Manak M, Damborsky J, Kozlikova B. CAVER Analyst 2.0: analysis and visualization of channels and tunnels in protein structures and molecular dynamics trajectories. Bioinformatics. 2018; 34(20):3586-88.
[21]
Wang N, Ozer EA, Mandel MJ, Hauser AR. Genome-wide identification of Acinetobacter baumannii genes necessary for persistence in the lung. mBio. 2014; 5(3):e01163-14.
[22]
Noland CL, Kattke MD, Diao J, Gloor SL, Pantua H, Reichelt M, Katakam AK, Yan D, Kang J, Zilberleyb I, Xu M, Kapadia SB, Murray JM. Structural insights into lipoprotein N-acylation by Escherichia coli apolipoprotein N-acyltransferase. Proc Natl Acad Sci U.S.A. 2017;114(30):E6044-53.
[23]
Tiwari V, Panta PR, Billiot CE, Douglass MV, Herrera CM, Trent MS, Doerrler WT. A Klebsiella pneumoniae DedA family membrane protein is required for colistin resistance and for virulence in wax moth larvae. Sci Rep. 2021; 11(1):24365.
[24]
Panta PR, Kumar S, Stafford CF, Billiot CE, Douglass MV, Trent MS, Doerrler WT. A DedA family membrane protein is required for Burkholderia thailandensis colistin resistance. Front Microbiol. 2019; 10:2532.
[25]
Mohammadi T, van Dam V, Sijbrandi R, Vernet T, Zapun A, Bouhss A, Diepeveen-de Bruin M, Nguyen-Distèche M, de Kruijff B, Breukink E. Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane. EMBO J. 2011; 30(8):1425-32.
[26]
Mao G, Zhao Y, Kang X, Li Z, Zhang Y, Wang X, Sun F, Sankaran K, Zhang XC. Crystal structure of E. coli lipo-protein diacylglyceryl transferase. Nat Commun. 2016; 7:10198.
[27]
Emami K, Guyet A, Kawai Y, Devi J, Wu LJ, Allenby N, Daniel RA, Errington J. RodA as the missing glycosyl-transferase in Bacillus subtilis and antibiotic discovery for the peptidoglycan polymerase pathway. Nat Microbiol. 2017; 2:16253.
[28]
Sjodt M, Brock K, Dobihal G, Rohs PDA, Green AG, Hopf TA, Meeske AJ, Srisuknimit V, Kahne D, Walker S, Marks DS, Bernhardt TG, Rudner DZ, Kruse AC. Structure of the peptidoglycan polymerase RodA resolved by evolutionary coupling analysis. Nature. 2018; 556(7699):118-21.
[29]
El Ghachi M, Howe N, Huang CY, Olieric V, Warshamanage R, Touzé T, Weichert D, Stansfeld PJ, Wang M, Kerff F, Caffrey M. Crystal structure of undecaprenyl-pyrophosphate phosphatase and its role in peptidoglycan biosynthesis. Nat Commun. 2018; 9(1):1078.