Biopolym. Cell. 2022; 38(3):169-185.
Biomedicine
Expresion paterns of various PDCD1 and PDL1 isoforms in prostate tumors
1Gerashchenko G. V., 2Kononenko O. A., 3Bondarenko Yu. M., 2Stakhovsky E. O., 1Tkachuk Z. Yu., 1Tukalo M. A., 1Kashuba V. I.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03143
  2. National Cancer Institute
    33/43, Lomonosova Str., Kyiv, Ukraine, 03022
  3. State Institution «Institute of Urology of NAMS of Ukraine»
    9-a, Yu. Kotsubyns'koho Str., Kyiv, Ukraine, 04053

Abstract

Aim. To assess the relative expression (RE) levels of various isoforms of the PDCD1 and PDL1 immune checkpoint genes in prostate tumors, to find the clinically significant alterations in tumors and the correlations with the prostate cancer related and other immune associated genes. Methods. Using quantitative PCR, RE levels of different isoforms of PDCD1 and PDL1 were analyzed in 35 samples of prostate cancer tissues of a different Gleason score (GS) and at various grades, the paired conventionally normal prostate tissue (CNT) samples and 20 prostate adenomas. Results. We have assessed RE levels for 5 variants of long and short isoforms of PDCD1 and PDL1 in prostate cancer and noncancerous tissue samples. We detected a significant decrease of RE levels of PDL1 long isoforms in prostate cancer with GS>7, compared with the adenoma group. Noteworthy, RE of short isoforms of PDCD1 and PDL1 has positive correlations with the age. The RE patterns of PDCD1 and PDL1 isoforms demonstrated significant correlations with the expression of 31 genes, related to tumor-associated macrophages, fibroblasts and immune cell markers in the prostate cancer group. Conclusions. The studied genes are involved in the prostate cancer progression, related to inflammation. The RE levels showed high dispersion in all groups of prostate tissue samples. We propose to assess the RE levels of the PDCD1 and PDL1 genes long isoforms, before prescribing immunotherapy methods, to analyse the putative sensitivity of tumors to such treatment. Further studies are needed to confirm the presented here results on a larger patient cohort.
Keywords: prostate tumors, relative gene expression, PDCD1, PDL1, long and short isoforms, pharmacological markers.

References

[1] Ljunggren HG, Jonsson R, Hoglund P. Seminal immunologic discoveries with direct clinical implications: the 2018 Nobel prize in physiology or medicine honours discoveries in cancer immunotherapy. Scand J Immunol. 2018; 88:e12731.
[2] Bagchi S, Yuan R, Engleman EG. Immune Checkpoint Inhibitors for the Treatment of Cancer: Clinical Impact and Mechanisms of Response and Resistance. Annu Rev Pathol. 2021; 16:223-249.
[3] Marin-Acevedo JA, Kimbrough EO, Lou Y. Next generation of immune checkpoint inhibitors and beyond. J Hematol Oncol. 2021; 14(1):45.
[4] Lee EQ. Immune checkpoint inhibitors in GBM. J Neurooncol. 2021; 155(1):1-11.
[5] Kaushik I, Ramachandran S, Zabel C, Gaikwad S, Srivastava SK. The evolutionary legacy of immune checkpoint inhibitors. Semin Cancer Biol. 2022; 86(Pt 2):491-498.
[6] Hussaini S, Chehade R, Boldt RG, Raphael J, Blanchette P, Maleki Vareki S, Fernandes R. Association between immune-related side effects and efficacy and benefit of immune checkpoint inhibitors - A systematic review and meta-analysis. Cancer Treat Rev. 2021; 92:102134.
[7] Quach HT, Johnson DB, LeBoeuf NR, Zwerner JP, Dewan AK. Cutaneous adverse events caused by immune checkpoint inhibitors. J Am Acad Dermatol. 2021; 85(4):956-966.
[8] Dall'Olio FG, Marabelle A, Caramella C, Garcia C, Aldea M, Chaput N, Robert C, Besse B. Tumour burden and efficacy of immune-checkpoint inhibitors. Nat Rev Clin Oncol. 2022; 19(2):75-90.
[9] Wang C, Weng M, Xia S, Zhang M, Chen C, Tang J, Huang D, Yu H, Sun W, Zhang H, Lai M. Distinct roles of programmed death ligand 1 alternative splicing isoforms in colorectal cancer. Cancer Sci. 2021; 112(1):178-193.
[10] Sun D, Zhao X, Yu Y, Li W, Gu P, Zhi Z, Xu D. Comprehensive characterization of the alternative splicing land-scape in ovarian cancer reveals novel events associated with tumor-immune microenvironment. Biosci Rep. 2022; 42(2):BSR20212090.
[11] Liu Y, Xu L, Hao C, Wu J, Jia X, Ding X, Lin C, Zhu H, Zhang Y. Identification and Validation of Novel Im-mune-Related Alternative Splicing Signatures as a Prognostic Model for Colon Cancer. Front Oncol. 2022; 12:866289.
[12] Schmidt U, Fuessel S, Koch R. Quantitative multi-gene expression profiling of primary prostate cancer. Prostate. 2006; 66: 1521-34.
[13] Gerashchenko GV, Mankovska OS, Dmitriev AA, Mevs LV, Rosenberg EE, Pikul MV, Marynychenko MV, Gryzodub OP, Stakhovsky EO, Kashuba VI. Expression of epithelial-mesenchymal transition-related genes in prostate tumours. Biopolym Cell. 2017, 33(5):335-55.
[14] Gerashchenko GV, Mevs LV, Chashchina LI, Pikul MV, Gryzodub OP, Stakhovsky EO, Kashuba VI. Expression of steroid and peptide hormone receptors, metabolic enzymes and EMT-related genes in prostate tumors in relation to the presence of the TMPRSS2/ERG fusion. Exp Oncol. 2018, 40(2):101-8.
[15] Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. 1995, 57: 289-300.
[16] Niu M, Liu Y, Yi M, Jiao D, Wu K. Biological characteristics and clinical significance of soluble PD-1/PD-L1 and exosomal PD-L1 in Cancer. Front Immunol. 2022; 13:827921.
[17] Takada K, Toyokawa G, Okamoto T, Shimokawa M, Kozuma Y, Matsubara T, Haratake N, Akamine T, Takamori S, Katsura M, Shoji F, Oda Y, Maehara Y. A comprehensive analysis of programmed cell death Ligand-1 expression with the clone SP142 antibody in non-small- cell lung cancer patients. Clin Lung Cancer. 2017; 18:572-582, e571.
[18] Wang HB, Yao H, Li CS, Liang LX, Zhang Y, Chen YX, Fang JY and Xu J. Rise of PD-L1 expression during metastasis of colorectal cancer: implications for immunotherapy. J Dig Dis. 2017; 18:574-81.
[19] Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res. 2020; 10(3):727-742.
[20] Gevensleben H, Dietrich D, Golletz C, Steiner S, Jung M, Thiesler T, Majores M, Stein J, Uhl B, Muller S, Ellin-ger J, Stephan C, Jung K, Brossart P. Kristiansen G. The immune checkpoint regulator PD-L1 is highly expressed in aggressive primary prostate cancer. Clin Cancer Res. 2016; 22:1969-1977
[21] De Giglio A, Di Federico A, Nuvola G, Deiana C, Gelsomino F. The landscape of immunotherapy in advanced NSCLC: driving beyond PD-1/PD-L1 inhibitors (CTLA-4, LAG3, IDO, OX40, TIGIT, Vaccines). Curr Oncol Rep. 202; 23(11):126.
[22] Vidula N, Yau C, Rugo HS. Programmed cell death 1 (PD-1) receptor and programmed death ligand 1 (PD-L1) gene expression in primary breast cancer. Breast Cancer Res Treat. 2021; 187(2):387-95.
[23] Perdana NR, Mochtar CA, Umbas R, Hamid AR. The risk factors of prostate cancer and its prevention: a literature review. Acta Med Indones. 2016; 48(3):228-38.
[24] White MC, Holman DM, Goodman RA, Richardson LC. Cancer risk among older adults: time for cancer pre-vention to go silver. Gerontologist. 2019; 59 (Suppl 1):S1-S6.
[25] Sepesi B, Cuentas EP, Canales JR, Behrens C, Correa AM, Vaporciyan A, Weissferdt A, Kalhor N, Moran C, Swisher S, Wistuba I. Programmed death cell ligand 1 (PD-L1) is associated with survival in stage i non-small cell lung cancer. Semin Thorac Cardiovasc Surg. 2017; 29(3):408-15.
[26] Mortensen JB, Monrad I, Enemark MB, Ludvigsen M, Kamper P, Bjerre M, d'Amore F. Soluble programmed cell death protein 1 (sPD-1) and the soluble programmed cell death ligands 1 and 2 (sPD-L1 and sPD-L2) in lymphoid malignancies. Eur J Haematol. 2021;107(1):81-91.
[27] Gerashchenko GV, Grygoruk OV, Kononenko OA, Gryzodub OP, Stakhovsky EO, Kashuba VI. Expression pattern of genes associated with tumor microenvironment in prostate cancer. Exp Oncol. 2018;40(4):315-22.
[28] Ajduković J. HIF-1 - a big chapter in the cancer tale. Exp Oncol. 2016; 38(1):9-12.
[29] Kim JY, Lee JY. Targeting Tumor Adaption to Chronic Hypoxia: Implications for Drug Resistance, and How It Can Be Overcome. Int J Mol Sci. 2017; 18(9). pii: E1854.
[30] Rhim T, Lee DY, Lee M. Hypoxia as a target for tissue specific gene therapy. J Control Release. 2013; 172(2):484-94.
[31] Petrova V, Annicchiarico-Petruzzelli M, Melino G, Amelio I. The hypoxic tumour microenvironment. Oncogene-sis. 2018; 7(1):10.
[32] Hu W, Qian Y, Yu F, Liu W, Wu Y, Fang X, Hao W. Alternatively activated macrophages are associated with metastasis and poor prognosis in prostate adenocarcinoma. Oncol Lett. 2015; 10: 1390-6.
[33] Edin S, Wikberg ML, Dahlin AM, Rutegård J, Öberg Å, Oldenborg PA, Palmqvist R. The distribution of macrophages with a M1 or M2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer. PLoS One. 2012; 7(10):e47045.
[34] Almatroodi SA, McDonald CF, Darby IA, Pouniotis DS. Characterization of M1/M2 Tumour-Associated Macro-phages (TAMs) and Th1/Th2 Cytokine Profiles in Patients with NSCLC. Cancer Microenviron. 2016; 9(1):1-11.
[35] Sun S, Pan X, Zhao L, Zhou J, Wang H, Sun Y. The Expression and Relationship of CD68-Tumor-Associated Macrophages and Microvascular Density With the Prognosis of Patients With Laryngeal Squamous Cell Carcinoma. Clin Exp Otorhinolaryngol. 2016; 9(3):270-7.
[36] Yang L, Zhang Y. Tumor-associated macrophages: from basic research to clinical application. J Hematol Oncol. 2017; 10(1):58.
[37] Tsujikawa T, Yaguchi T, Ohmura G, Ohta S, Kobayashi A, Kawamura N, Fujita T, Nakano H, Shimada T, Takahashi T, Nakao R, Yanagisawa A, Hisa Y, Kawakami Y. Autocrine and paracrine loops between cancer cells and macrophages promote lymph node metastasis via CCR4/CCL22 in head and neck squamous cell carcinoma. Int J Cancer. 2013; 132(12):2755-66.
[38] Maolake A, Izumi K, Shigehara K, Natsagdorj A, Iwamoto H, Kadomoto S, Takezawa Y, Machioka K, Narimoto K, Namiki M, Lin WJ, Wufuer G, Mizokami A. Tumor-associated macrophages promote prostate cancer migration through activation of the CCL22-CCR4 axis. Oncotarget. 2017; 8(6):9739-51.
[39] Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Wein-berg RA. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005; 121(3):335-48.
[40] Augsten M, Hägglöf C, Olsson E, Stolz C, Tsagozis P, Levchenko T, Frederick MJ, Borg A, Micke P, Egevad L, Ostman A. CXCL14 is an autocrine growth factor for fibroblasts and acts as a multi-modal stimulator of prostate tumor growth. Proc Natl Acad Sci U S A. 2009; 106(9):3414-9.
[41] Rodríguez-Nieves JA, Patalano SC, Almanza D, Gharaee-Kermani M, Macoska JA. CXCL12/CXCR4 Axis Acti-vation Mediates Prostate Myofibroblast Phenoconversion through Non-Canonical EGFR/MEK/ERK Signaling. PLoS One. 2016; 11(7):e0159490.
[42] Martinon F, Mayor A, Tschopp J. The inflammasomes: guardians of the body. Annu Rev Immunol. 2009; 27:229-65.
[43] Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA, Hornung V, Latz E. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 2009;183(2):787-91.
[44] Kinoshita T, Imamura R, Kushiyama H, Suda T. NLRP3 mediates NF-κB activation and cytokine induction in microbially induced and sterile inflammation. PLoS One. 2015; 10(3):e0119179.
[45] Moossavi M, Parsamanesh N, Bahrami A, Atkin SL, Sahebkar A. Role of the NLRP3 inflammasome in cancer. Mol Cancer. 2018; 17(1):158.
[46] Walker LS, Sansom DM. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat Rev Immunol. 2011; 11(12):852-63.
[47] Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996; 271(5256):1734-6.
[48] Kyi C, Postow MA. Immune checkpoint inhibitor combinations in solid tumors: opportunities and challenges. Immunotherapy. 2016; 8(7):821-37.
[49] Niyongere S, Saltos A, Gray JE. Immunotherapy combination strategies (non-chemotherapy) in non-small cell lung cancer. J Thorac Dis. 2018; 10(Suppl 3):S433-S450.
[50] Gerashchenko GV, Chashchina LI, Rynditch AV, Kashuba VI. The gene expression pattern as a tool for assessment of components of microenvironment and response to anti-cancer therapy of prostate tumors. Dopov. Nac. acad. Nauk Ukr. 2019; 4:86-93.
[51] Takezako N, Hayakawa M, Hayakawa H, Aoki S, Yanagisawa K, Endo H, Tominaga S. ST2 suppresses IL-6 production via the inhibition of IkappaB degradation induced by the LPS signal in THP-1 cells. Biochem Biophys Res Commun. 2006; 341(2):425-32.
[52] Wang LH, Wang LL, Zhang J, Zhang P, Li SZ. [Th1/Th2 and Treg/Th17 cell balance in peripheral blood of patients with ovarian cancer]. Nan Fang Yi Ke Da Xue Xue Bao. 2017; 37(8):1066-1070.
[53] Hirahara K, Nakayama T. CD4+ T-cell subsets in inflammatory diseases: beyond the Th1/Th2 paradigm. Int Immunol. 2016; 28(4):163-71.
[54] Rodriguez JE, Naigeon M, Goldschmidt V, Roulleaux Dugage M, Seknazi L, Danlos FX, Champiat S, Marabelle A, Michot JM, Massard C, Besse B, Ferrara R, Chaput N, Baldini C. Immunosenescence, inflammaging, and cancer immunotherapy efficacy. Expert Rev Anticancer Ther. 2022; 22(9):915-926.
[55] El Bairi K, Haynes HR, Blackley E, Fineberg S, Shear J, Turner S, de Freitas JR, Sur D, Amendola LC, Gharib M, Kallala A, Arun I, Azmoudeh-Ardalan F, Fujimoto L, Sua LF, Liu SW, Lien HC, Kirtani P, Balancin M, El Attar H, Guleria P, Yang W, Shash E, Chen IC, Bautista V, Do Prado Moura JF, Rapoport BL, Castaneda C, Spengler E, Acosta-Haab G, Frahm I, Sanchez J, Castillo M, Bouchmaa N, Md Zin RR, Shui R, Onyuma T, Yang W, Husain Z, Willard-Gallo K, Coosemans A, Perez EA, Provenzano E, Ericsson PG, Richardet E, Mehrotra R, Sarancone S, Ehinger A, Rimm DL, Bartlett JMS, Viale G, Denkert C, Hida AI, Sotiriou C, Loibl S, Hewitt SM, Badve S, Symmans WF, Kim RS, Pruneri G, Goel S, Francis PA, Inurrigarro G, Yamaguchi R, Garcia-Rivello H, Horlings H, Afqir S, Salgado R, Adams S, Kok M, Dieci MV, Michiels S, Demaria S, Loi S; International Immuno-Oncology Biomarker Working Group. The tale of TILs in breast cancer: A report from The International Im-muno-Oncology Biomarker Working Group. NPJ Breast Cancer. 2021; 7(1):150.
[56] Gao Y, Sun Z, Gu J, Li Z, Xu X, Xue C, Li X, Zhao L, Zhou J, Bai C, Han Q, Zhao RC. Cancer-Associated Fibrob-lasts Promote the Upregulation of PD-L1 Expression Through Akt Phosphorylation in Colorectal Cancer. Front Oncol. 2021; 11:748465.
[57] Wei Y, Liang M, Xiong L, Su N, Gao X, Jiang Z. PD-L1 induces macrophage polarization toward the M2 pheno-type via Erk/Akt/mTOR. Exp Cell Res. 2021; 402(2):112575.
[58] Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, Gupta R, Tsai JM, Sinha R, Corey D, Ring AM, Connolly AJ, Weissman IL. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017; 545(7655):495-9.
[59] Miao Y, Wang J, Li Q, Quan W, Wang Y, Li C, Wu J, Mi D. Prognostic value and immunological role of PDCD1 gene in pan-cancer. Int Immunopharmacol. 2020; 89(Pt B):107080.
[60] Kim JM, Chen DS. Immune escape to PD-L1/PD-1 blockade: seven steps to success (or failure). Ann Oncol. 2016; 27(8):1492-504.