Biopolym. Cell. 2022; 38(2):71-92.
Reviews
Practical application of electrochemical enzyme biosensors
1, 2Dzyadevych S. V., 1, 3Soldatkin O. O., 1Arkhypova V. M., 1Shkotova L. V., 1Pyeshkova V. M., 1Saiapina O. Ya., 4Jaffrezic-Renault N., 1, 2Soldatkin A. P., 1Elskaya A. V.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03143
  2. Institute of High Technologies,
    Taras Shevchenko National University of Kyiv
    2, korp.5, Pr. Akademika Hlushkova, Kyiv, Ukraine, 03022
  3. National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"
    37, Peremohy Ave, Kyiv, Ukraine, 03056
  4. University Claude Bernard Lyon 1, Institute of Analytical Sciences, UMR5280 CNRS/UCBL/ENS,
    5, rue de la Doua, Villeurbanne, France, 69100

Abstract

The electrochemical biosensor is an integrated receptor-transducer device, which can convert a biological response into a measurable electrical signal. Because of its important features like selectivity, sensitivity, stability, reproducibility, linearity, and low cost, biosensors have a wide range of applications. The aim of this paper is to review our achievements in the development of electrochemical enzyme biosensors and the possibility of their applications in food industry, agriculture and environmental control. The specific structural features of transducers in the developed amperometric, potentiometric and conductometric enzyme biosensors are discussed. The laboratory prototypes were fabricated and systematically tested for the determination of glycoalkaloids, mycotoxins, heavy metal ions and pesticides in the agriculture and environment samples as well as some components of food and dietary supplements. They demonstrated fast, highly selective, sensitive and correct analytical operation and also the possibility to modulate main characteristics to comply with the specific requirements for the practical purposes. It is important that the manufacture of such miniaturized electrochemical biosensors may be adapted to the technologies of large-scale production.
Keywords: electrochemical biosensors, enzymes, application, agriculture, food, environment

References

[1] Soldatkin AP, Dzyadevych SV, Korpan YI, Sergeyeva TA, Arkhypova VN, Biloivan OA, Soldatkin OO, Shkotova LV, Zinchenko OA, Peshkova VM, Saiapina OY, Marchenko SV, El'skaya AV. Biosensors. A quarter of a century of R&D experience. Biopolym Cell. 2013; 29(3): 188-206.
[2] Perumal V, Hashim U. Advances in biosensors: Principle, architecture and applications. J Appl Biomed. 2014; 12(1): 1-15.
[3] Rotariu L, Lagarde F, Jaffrezic-Renault N, Bala C. Electrochemical biosensors for fast detection of food contaminants - trends and perspective. TrAC Trends Anal Chem. 2016; 79: 80-87.
[4] Cosnier S. Electrochemical Biosensors. Singapore: "Pan Stanford Publishing", 2015. 412 p.
[5] Dzyadevych SV, Soldatkin OP. The scientific and technological principles of midget electrochemical biosensors creation. Kyiv: "Naukova dumka", 2006; 256 p.
[6] Thévenot DR, Toth K, Durst RA, Wilson GS. Electrochemical biosensors: recommended definitions and classification (Technical report). Pure Appl Chem. 1999; 71(12): 2333-48.
[7] Pavluchenko AS, Kukla AL, Goltvianskyi YV, Soldatkin OO, Arkhypova VM, Dzyadevych SV, Soldatkin AP. Investigation of stability of the pH-sensitive field-effect transistor characteristics. Sensor Lett. 2011; 9(6): 2392-6.
[8] Dzyadevych SV. Conductometric enzyme biosensors theory, technology and application. Biopolym Cell. 2005; 21(2): 91-106.
[9] Melnik VG, Vasylenko AD, Semenycheva LN, Slitskiy AV, Saiapina OY, Dzyadevych SV. Solutions for enhancement of sensitivity and metrological reliability of conductometric biosensor systems. Eng Res Express. 2021; 3(045008): 1-16.
[10] Arkhypova VN, Dzyadevych SV, Soldatkin AP, El'skaya AV, Martelet C. Jaffrezic-Renault N. Development and optimisation of biosensors based on pH-sensitive field effect transistor and cholinesterase for sensitive detection of solanaceous glycoalkaloids. Biosens Bioelectron. 2003; 18: 1047-53.
[11] Dzyadevych SV, Arkhypova VN, Soldatkin AP, El'skaya AV, Martelet C, Jaffrezic-Renault N. Enzyme biosensor for tomatine detection in tomatoes. Anal Lett. 2004; 37(8): 1-14.
[12] Arkhypova VN, Dzyadevych SV, Soldatkin AP, Korpan YI, El'skaya AV, Gravoueille J-M, Martelet C, Jaffrez-ic-Renault N. Application of enzyme field effect transistors for fast detection of total glycoalkaloids content in potatoes. Sens Actuators B. 2004; 103: 416-22.
[13] Soldatkin AP, Arkhypova VN, Dzyadevych SV, El'skaya AV, Gravoueille J-M, Jaffrezic-Renault N, Martelet C. Analysis of the potato glycoalkaloids by using of enzyme biosensor based on pH-ISFETs. Talanta. 2005; 66: 28-33.
[14] Hellenäs KE, Branzell C. Liquid chromatographic determination of the glycoalkaloids alpha-solanine and alpha-chaconine in potato tubers: NMKL Interlaboratory Study. Nordic Committee on Food Analysis. J AOAC Inter. 1997; 80(3): 549-554.
[15] Arkhypova VN, Dzyadevych SV, Jaffrezic-Renault N, Martelet C, Soldatkin AP. Biosensors for assay of glycoalkaloids in potato tubers. Appl Biochem Microbiol. 2008; 44(3): 314-8.
[16] Soldatkin OO, Burdak OS, Sergeyeva TA, Arkhypova VM, Dzyadevych SV, Soldatkin AP. Acetylcholineste-rase-based conductometric biosensor for determination of aflatoxin B1. Sens Actuators B. 2013; 188: 999-1003.
[17] Stepurska KV, Soldatkin OO, Arkhypova VM, Soldatkin AP, Lagarde F, Jaffrezic-Renault N, Dzyadevych SV. Development of novel enzyme potentiometric biosensor based on pH-sensitive field-effect transistors for afla-toxin B1 analysis in real samples. Talanta. 2015; 144: 1079-84.
[18] Stepurska KV, Soldatkin OO, Kucherenko IS, Arkhypova VM, Dzyadevych SV, Soldatkin AP. Feasibility of ap-plication of conductometric biosensor based on acetylcholinesterase for the inhibitory analysis of toxic com-pounds of different nature. Anal Chim Acta. 2015; 854: 161-8.
[19] Stepurska K, Korobko M, Arkhypova V, Soldatkin O, Lagarde F, Jaffrezic-Renault N, Soldatkin A, Dzyadevych S. Inhibition of immobilized acetylcholinesterase by aflatoxin B1 in potentiometric biosensor. Biopolym Cell. 2016; 32(4): 271-8.
[20] Dzyadevych SV, Jaffrezic-Renault N. Conductometric Microbiosensors for Environmental Monitoring. Sensors. 2008; 8: 2569-2588.
[21] Kumara P, Kim K, Bansal V, Lazarides T, Kumar N. Progress in the sensing techniques for heavy metal ions using nanomaterials. J Ind Eng Chem. 2017; 54: 30-43.
[22] Schuman SH, Simpson WM. A clinical historical overview of pesticide health issues. Occup Med (Philadelphia, Pa.). 1997; 12(2): 203-7.
[23] Johnson BL. A review of health-based comparative risk assessments in the United States. Rev Environ Health. 2000; 15(3): 273-87.
[24] Arkhipova VN, Dzyadevych SV, Soldatkin AP, El'skaya AV, Jaffrezic-Renault N, Jaffrezic H, Martlet C. Multibiosensor based on enzyme inhibition analysis for determination of different toxic substances. Talanta. 2005; 55(5): 919-27.
[25] Verscheuren K. Handbook of environmental data on organic chemicals. New York: "Wiley", 2008. 4486p
[26] Dzyadevych SV, Soldatkin AP, Arkhypova VN, El'skaya AV, Chovelon J-M, Georgiou C, Martelet C, Jaffrez-ic-Renault N. Early-warning electrochemical biosensor system for the environmental monitoring based on en-zyme inhibition effect. Sens Actuators B. 2005; 105: 81-7.
[27] Marrakchi M, Dzyadevych SV, Namour P, Martelet C, Jaffrezic-Renault N. An enzyme biosensor based on gold interdigitated thin film electrodes for water quality control. Analytical Letters. 2007; 40: 1307-1316.
[28] Soldatkin OO, Pavluchenko OS, Kukla OL, Arkhypova VM, Dzyadevych SV, Soldatkin AP, El'skaya AV. Optimization of multibiosensor usage for inhibitory analysis of toxins. Biopolym Cell. 2008; 24(6): 494-502.
[29] Soldatkin OO, Kucherenko IS, Pyeshkova VM, Kukla AL, Jaffrezic-Renault N, El'skaya AV, Dzyadevych SV, Soldatkin AP. Conductometric biosensor based on three-enzyme system for selective determination of heavy metal ions. Bioelectrochemistry. 2012; 30: 25-30.
[30] Marrakchi M, Jaffrezic-Renault N, Dzyadevych SV, Lagarde F. Pollutant detection and environmental monitoring using conductometric microbiosensors. In: Industrial Waste: Environmental Impact, Disposal and Treatment (Ed. John P. Samuelson), New York: "Nova Science Publishers", 2009. 205-22.
[31] Dzyadevych SV, Arkhypova VN, Martelet C, Jaffrezic-Renault N, Chovelon J-M, El'skaya AV, Soldatkin AP. Potentiometric biosensors based on ISFETs and immobilized cholinesterases. Electroanalysis. 2004; 16: 1873-82.
[32] Soldatkin OO, Pavluchenko OS, Kukla OL, Kucherenko IS, Peshkova VM, Arkhypova VM, Dzyadevych SV, Soldatkin AP, El'skaya A.V. Application of enzyme multibiosensor for toxicity analysis of real water samples of different origin. Biopolym Cell. 2009; 25 (3): 204-9.
[33] Saurina J. Characterisation of wines using compositional profiles and chemometrics. Trends Anal Chem. 2010; 29(3): 234-45.
[34] Compagnone D, Esti M, Messia MC, Peluso E, Palleschi G. Development of a biosensor for monitoring of gly-cerol during alcoholic fermentation. Biosens Bioelectron. 1998; 13(7-8): 875-80.
[35] Ettinger PO, Wu CF, De La Cruz CJr., Weisse AB, Ahmed SS, Regan TJ. Arrhythmias and the "Holiday Heart": Alcohol associated cardiac rhythm disorders. Am Heart J. 1978; 95(5): 555-62.
[36] Videla LA. Assessment of the scavenging action of reduced glutathione, (+)-cyanidanol-3 and ethanol by the chemiluminescent response of the xanthine oxidase reaction. Experienta. 1983; 39(5): 500-502.
[37] Avramescu A, Noguer T, Magearu V, Marty J-L. Chronoamperometric determination of d-lactate using screen-printed enzyme electrodes. Anal Chim Acta. 2001; 433(1): 81-8.
[38] Parra A, Casero E, Vázquez L, Pariente F, Lorenzo E. Design and characterization of a lactate biosensor based on immobilized lactate oxidase onto gold surfaces. Anal Chimica Acta. 2006; 555(2): 308-15.
[39] Esti M, Volpe G, Micheli L, Delibato E, Compagnone D, Moscone D, Palleschi G. Electrochemical biosensors for monitoring malolactic fermentation in red wine using two strains of Oenococcus oeni. Anal Chim Acta. 2004; 513(1): 357-64.
[40] Goriushkina TB, Shkotova LV, Gayda GZ, Klepach HM, Gonchar MV, Soldatkin AP, Dzyadevych S.V. Amperometric biosensor based on glycerol oxidase for glycerol determination. Sens Actuators B. 2010; 144(2): 361-7.
[41] Goriushkina TB, Soldatkin AP, Dzyadevych SV. Application of amperometric biosensors for analysis of ethanol, glucose and lactate in wine. J Agric Chem. 2009; 57(15): 6528-35.
[42] Shkotova L, Bohush A, Voloshina I, Smutok O, Dzyadevych S. Amperometric biosensor modified with platinum and palladium nanoparticles for detection of lactate concentrations in wine. SN Appl Sci. 2019; 1: 306.
[43] Shkotova LV, Goriushkina TB, Tran-Minh C, Soldatkin AP, Dzyadevych S. Amperometric biosensor for lactate analysis in wine and must during fermentation. Mater Sci Eng C. 2008; 28(5-6): 943-8.
[44] Shkotova LV, Piechniakova NY, Kukla OL, Dzyadevych SV. Thin-film amperometric multibiosensor for simultaneous determination of lactate and glucose in wine. Food Chem. 2016; 197(A): 972-8.
[45] Shkotova LV, Soldatkin AP, Gonchar MV, Schuhmann W, Dzyadevych SV. Amperometric biosensor for ethanol detection based on alcohol oxidase immobilised within electrochemically deposited Resydrol film. Mater Sci Eng C. 2006; 26(2-3): 411-4.
[46] Shkotova LV, Woloshina IM, Kovalchuk VV, Zhybak MT, Dzyadevych SV. Amperometric glucose biosensor with the IrNPs/ludox - modified enzyme matrix. Biopolym Cell. 2018; 34(5): 367-73.
[47] Goriushkina T B, Orlova A P, Smutok OV, Gonchar MV, Soldatkin AP, Dzyadevych SV. Application of L-lactate-cytochrome c-oxidoreductase for development of amperometric biosensor for L-lactate determination. Biopolym Cell. 2009; 25 (3): 194-203.
[48] Goriushkina TB, Orlova AP, Veryk GM, Soldatkin AP, Dzyadevych SV. Optimization of ethanol determination in wine by enzyme amperometric biosensor. Biopolym Cell. 2009; 25 (4): 279-89.
[49] Pyeshkova VN, Soldatkin AA, Dzyadevych S.V. Optimization of sucrose measurement working procedure in real samples using conductometric enzyme biosensor. Biopolym Cell. 2007; 23(6): 501-9.
[50] Soldatkin OO, Peshkova VM, Dzyadevych SV, Soldatkin AP, Jaffrezic-Renault N, El'skaya AV. Novel sucrose three-enzyme conductometric biosensor. Mater Sci Eng C. 2008; 28(5-6): 959-64.
[51] Pyeshkova VM, Saiapina OY, Soldatkin OO, Dzyadevych SV. Enzyme conductometric biosensor for maltose determination. Biopolym Cell. 2009; 25(4): 272-8.
[52] Soldatkin OO, Peshkova VM, Saiapina OY, Kucherenko IS, Dudchenko OY, Melnyk VG, Vasylenko OD, Semenycheva LM, Soldatkin AP, Dzyadevych SV. Development of conductometric biosensor array for simultaneous determination of maltose, lactose, sucrose and glucose. Talanta. 2013; 115: 200-7.
[53] Pyeshkova VM, Dudchenko OY, Soldatkin OO, Kasap BO, Lagarde F Akata Kurç B, Dzyadevych SV. Application of silicalite-modified electrode for the development of sucrose biosensor with improved characteristics. Nanoscale Res Lett. 2015; 10: 149.
[54] Dudchenko OY, Pyeshkova VM, Soldatkin OO, Akata B, Kasap BO, Soldatkin AP, Dzyadevych SV. Development of silicalite/glucose oxidase-based biosensor and its application for glucose determination in juices and nectars. Nanoscale Res Lett. 2016; 11: 59.
[55] Pyeshkova VM, Dudchenko OY, Soldatkin OO, Alekseev SA, Seker T, Akata Kurç B, Dzyadevych SV. Development of three-enzyme lactose amperometric biosensor modified by nanosized poly (meta-phenylenediamine) film. Appl Nanosci. 2022; 12: 1267-1274.
[56] Baylis C. Nitric oxide deficiency in chronic kidney disease. American Journal Physiology-Renal Physiology. 2007; 294(1): F1-F9.
[57] Facchinetti F, Saade GR, Neri I, Pizzi C, Longo M, Volpe A. L-arginine supplementation in patients with gestational hypertension: a pilot study. Hypertens Pregnancy. 2007; 26(1): 121-30.
[58] Lucotti P, Monti L, Setola E, La Canna G, Castiglioni A, Rossodivita A, Pala M G, Formica F, Paolini G, Cata-pano AL, Bosi E, Alfieri O, Piatti P. Oral L-arginine supplementation improves endothelial function and ameliorates insulin sensitivity and inflammation in cardiopathic nondiabetic patients after an aortocoronary bypass. Metabolism. 2009; 58(9): 1270-6.
[59] George J, Shmuel SB, Roth A, Herz I, Izraelov S, Deutsch V, Keren G, Miller H. L-arginine attenuates lymphocyte activation and anti-oxidized LDL antibody levels in patients undergoing angioplasty. Atherosclerosis. 2004; 174(2): 323-7.
[60] Moutaouakil F, El Otmani H, Fadel H, Sefrioui F, Slassi I. L-arginine efficiency in MELAS syndrome. A case report. Revue Neurologique. 2009; 165(5): 482-5.
[61] Oka RK, Szuba A, Giacomini JC, Cooke JP. A pilot study of L-arginine supplementation on functional capacity in peripheral arterial disease. Vascular Mediccine. 2005; 10(4): 265-74.
[62] Ozsoy Y, Ozsoy M, Coskun T, Namli K, Var A, Ozyurt B. The effects of L-arginine on liver damage in experimental acute cholestasis an immunohistochemical study. HPB Surgery. 2011; 306069.
[63] Saiapina OY, Jaffrezic-Renault N, Soldatkin AP, Dzyadevych SV. Development and optimization of novel conductometric bi-enzyme biosensor for L-arginine determination. Talanta. 2012; 92: 58-64.
[64] Berketa K, Saiapina O, Fayura L, Sibirny A, Dzyadevych S, Soldatkin O. Novel highly sensitive conductometric biosensor based on arginine deiminase from Mycoplasma hominis for determination of arginine. Sensors Actuators B. 2022; 367: 132023.
[65] Saiapina OY, Jaffrezic-Renault N, Dzyadevych SV. Potentiality of application of the conductometric L-arginine biosensors for the real sample analysis. Biopolym Cell. 2012; 28: 441-8.