Biopolym. Cell. 2022; 38(1):37-47.
Bioorganic Chemistry
The effect of heterocyclic substituent at C-3 position of 1-(4-methyl-piperazin-1-yl)isoquinolines on their anticancer activity
1Konovalenko A. S., 1Zhirnov V. V., 1Shablykin O. V., 1, 2Shablykina O. V., 1, 2Moskvina V. S., 1Brovarets V. S.
  1. V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine,
    1, Murmans'ka Str., Kyiv, Ukraine, 02094
  2. Taras Shevchenko National University of Kyiv
    64, Volodymyrska Str., Kyiv, Ukraine, 01601


Aim. A comparative analysis of the anti-cancer activity of 1-(4-methylpiperazin-1-yl)isoquinolines with different heteroaromatic substituents in C-3 position: 2-methylthiazol-4-yl, 2-phenylthiazol-4-yl, 2-(pyridin-4-yl)thiazol-4-yl, imi-dazo[2,1-b]thiazol-6-yl, quinoxalin-2-yl, 6,7-dimethylquinoxalin-2-yl. Methods. Biological tests; statistic methods. Results. In vitro screening of the anticancer activity showed that the derivatives with 2-phenylthiazol-4-yl, quinoxaline-2-yl, 6,7-dimethylquinoxalin-2-yl substituents demonstrated the highest level of anticancer activity; however, they were inferior to 2-(pyridin-4-yl)thiazol-4-yl. The product with the 2-methylthiazol-4-yl residue almost did not demonstrated cytotoxicity. Comparative analysis showed no significant correlation with known drugs; hence these compounds have specific molecular targets. Conclusions. The resulting 1-amino-3-hetarylisoquinolines are a promising class of compounds for anticancer drug development. The level and direction of the activity significantly depend on the nature of heterocyclic substituents.
Keywords: in vitro screening, anticancer activity, 1-amino-3-hetarylisoquinolines


[1] Yun D, Yoon SY, Park SJ, Park YJ. The Anticancer Effect of Natural Plant Alkaloid Isoquinolines. Int J Mol Sci. 2021; 22: 1653.
[2] Xing C, LaPorte JR, Barbay J, Myers A. Identification of GAPDH as a protein target of the Saframycin antiproli-ferative agents. Proc Natl Acad Sci USA 2004; 101(16): 5862-6.
[3] Martinez EJ, Owa T, Schreiber SL, Corey EJ. Phthalascidin, a synthetic antitumor agent with potency and mode of action comparable to ecteinascidin 743. Proc Natl Acad Sci USA 1999; 96(7): 3496-501.
[4] González JF, de la Cuesta E, Avendaño C. Synthesis and cytotoxic activity of pyrazino[1,2-b]-isoquinolines, 1-(3-isoquinolyl)isoquinolines, and 6,15-iminoisoquino[3,2-b]-3-benzazocines. Bioorg Med Chem. 2007; 15(1): 112-8.
[5] Ortín I, González JF, Cuesta E de la, Manguan-García C, Perona R, Avendaño C. Pyrazino[1,2-b]isoquinolines: Synthesis and study of their cytostatic and cytotoxic properties. Bioorg Med Chem. 2007; 16(19): 9065-78.
[6] Katoh T, Kirihara M, Yoshino T, Tamura O, Ikeuchi F, Nakatani K, Matsuda F, Yamada K, Gomi K, Ashizawa T, Terashima S. Synthetic studies on quinocarcin and its related compounds. 5.: Synthesis and antitumor activity of various structural types of quinocarcin congeners. Tetrahedron 1994; 50(21): 6259-70.
[7] Monsees A, Laschat S, Hotfilder M, Wolff J, Bergander K, Terfloth L, Fröhlich R. Synthesis and in vitro cytotoxic activity of novel hexahydro-2H-pyrido[1,2-b]isoquinolines against human brain tumor cell lines. Bioorg Med Chem Lett. 1997; 7(23): 2945-50.
[8] Romero M, Caignard D-H, Renard P, Pujol MD. Synthesis of tetracyclic dioxygenated isoquinolines and their cytotoxic activity. Tetrahedron. 2008; 64(49): 11020-7.
[9] Zhao Y-H, Tang Z, Luo Y, Zhu Y, Wang H, Zhou H, Tan H, Zhou Z, Ma Y-C, Xie W, Tang Z. Synthesis of Potential Anticancer 1-(1H-Indol-3-yl)isoquinolines by Silver Nitrate Mediated Tandem Reactions of 2-Alkynylbenzaldehyde Azines and Indoles. Synlett. 2018; 29(6): 773-8.
[10] Iwasa K, Moriyasu M, Tachibana Y, Kim HS, Wataya Y, Wiegrebe W, Bastow KF, Cosentino LM, Kozuka M, Lee KH. Simple Isoquinoline and Benzylisoquinoline Alkaloids as Potential Antimicrobial, Antimalarial, Cytotoxic, and Anti-HIV Agents. Bioorg Med Chem. 2001; 9(11): 2871-84.
[11] Cui W, Iwasa K, Tokuda H, Kashihara A, Mitani Y, Hasegawa T, Nishiyama Y, Moriyasu M, Nishino H, Hanaoka M, Mukai C, Takeda K. Potential cancer chemopreventive activity of simple isoquinolines, 1-benzylisoquinolines, and protoberberines. Phytochemistry. 2006; 67(1): 70-9.
[12] Houlihan WJ, Munder PG, Handley DA, Cheon SH, Parrino VA. Antitumor Activity of 5-Aryl-2,3-dihydroimidazo[2,l-a]isoquinolines. J Med Chem. 1995; 38(2): 234-40.
[13] Cheon SH, Park JS, Chung B-H, Choi B-G, Cho W-J, Choi S-U, Lee C-O. Synthesis and Structure-Acti-vi-ty Relationship Studies of Substituted Isoquinoline Analogs as Antitumor Agent. Arch Pharm Res. 1998; 21(2): 193-7.
[14] Tropsha A, Golbraikh A, Cho W-J. Development of kNN QSAR Models for 3-Arylisoquinoline Antitumor Agents. Bull Korean Chem Soc. 2011; 32(7): 2397-404.
[15] My Van HT, Woo H, Jeong HM, Khadka DB, Yang SH, Zhao C, Jin Y, Lee E-S, Lee KY, Kwon Y, Cho W-J. Design, synthesis and systematic evaluation of cytotoxic 3-heteroarylisoquinolinamines as topoisomerases inhibitors. Eur J Med Chem. 2014; 82:181-94.
[16] Konovalenko AS, Shablykin OV, Brovarets VS, Shablykina OV, Moskvina VS, Kozytskiy AV. 3Hetarylisocoumarins in the synthesis of 1functionalized 3-hetarylisoquinolines. Chem Heterocycl Comp. 2020; 56(1): 1021-9.
[17] Konovalenko AS, Shablykin OV, Shablykina OV, Moskvina VS, Brovarets VS, Khilya VP. Anticancer activity of isoquinoline derivatives - products of 3-(2-(thien-2-yl)thiazol-4-yl)isocoumarin recyclization. Dopov Nac akad nauk Ukr. 2019; (12): 83-90.
[18] Zyabrev VS, Babiy SB, Turov KV, Vasilenko OM, Vinogradova TK, Brovarets VS. 2,4-Disulfanyl-5-cycloamino substituted thiazoles and their using as anticancer drugs. Patent 109165 UA. 2015.
[19] Boyd MR, Paull KD. Some practical considerations and applications of the national cancer institute in vitro anti-cancer drug discovery screen. Drug Dev Res. 1995; 34: 91-109.
[20] Barbera M, Caputo A, Zampiron A, Gobbi S, Rampa A, Bisi A, Carrara M. The ability of coumarin-, flavanon- and flavonol-analogues of flavone acetic acid to stimulate human monocytes. Oncol Rep. 2008; 19(1): 187-96.
[21] Daei Farshchi Adli A, Jahanban-Esfahlan R, Seidi K, Samandari-Rad S, Zarghami N. An overview on Vadimezan (DMXAA): The vascular disrupting agent. Chem Biol Drug Des. 2018; 91(5): 996-1006.
[22] Tsai S-H, Lin-Shiau S-Y, Lin J-K. Suppression of nitric oxide synthase and the down-regulation of the activation of NF-κB in macrophages by resveratrol. Br J Pharmacol. 1999; 126: 673-80.
[23] De Lellis L, Veschi S, Tinari N, Mokini Z, Carradori S, Brocco D, Florio R, Grassadonia A, Cama A. Drug Re-purposing, an Attractive Strategy in Pancreatic Cancer Treatment: Preclinical and Clinical Updates. Cancers (Basel). 2021; 13(16): 3946.
[24] Wu S, Li X, Gao F, de Groot JF, Koul D, Yung WKA. PARP-mediated PARylation of MGMT is critical to promote repair of temozolomide-induced O6-methyl-guanine DNA damage in glioblastoma. Neuro Oncol. 2021; 23(6): 920-31.
[25] Suzuki T, Kuramoto Y, Kamiya H. Reduction of Werner Syndrome Protein Enhances G:C → A:T Transition by O 6-Methylguanine in Human Cells. Chem Res Toxicol. 2018; 31(5): 319-24.
[26] Isah T. Anticancer Alkaloids from Trees: Development into Drugs Pharmacogn Rev. 2016; 10(20): 90-9.