Biopolym. Cell. 2021; 37(6):469-474.
Bioinformatics
Development of receptor-based protein kinase Cβ (PKCβ) pharmacophore model for the search of inhibitors with potential activity against acute respiratory distress syndrome (ARDS)
1, 2Starosyla S. A., 1, 3Volynets G. P., 1Protopopov M. V., 2, 4Koleiev I. M., 1Bdzhola V. G., 1Yarmoluk S. M.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03143
  2. RECEPTOR.AI
    Boston, USA
  3. LLC “Scientific and service firm “Otava”
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03143
  4. Educational and Scientific Center "Institute of Biology and Medicine",
    Taras Shevchenko National University of Kyiv
    64/13, Volodymyrska Str., Kyiv, Ukraine, 01601

Abstract

Aim. Development of receptor-based pharmacophore model for protein kinase Cβ(PKCβ). Methods. Pharmacophore modeling was performed with Discovery Studio Visualizer 4.0 and PharmDeveloper software. Results. The resulted pharamacophore model consisted of five pharamacophore features, two aromatic features without vectors, two acceptors of hydrogen bonds, one donor of acceptor bond, was generated and validated. Conclusion. This pharmacophore model will be used for virtual screening of compound collection in order to identify potential inhibitors of PKCβ.
Keywords: protein kinase Cβ, PKCβ, pharmacophore model, pharmacophore features

References

[1] Li H, Zhou X, Tan H, Hu Y, Zhang L, Liu S, Dai M, Li Y, Li Q, Mao Z, Pan P, Su X, Hu C. Neutrophil extracellular traps contribute to the pathogenesis of acid-aspiration-induced ALI/ARDS. Oncotarget. 2017; 9(2):1772-84.
[2] Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, Gattinoni L, van Haren F, Larsson A, McAuley DF, Ranieri M, Rubenfeld G, Taylor Thompson B, Wrigge H, Slusky AS, Pesenti A. Epidemio-lo-gy, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016; 315(8):788-800.
[3] Lefrançais E, Mallavia B, Zhuo H, Calfee CS, Looney MR. Maladaptive role of neutrophil extracellular traps in pathogen-induced lung injury. JCI Insight. 2018; 3(3):e98178.
[4] Chun CD, Liles WC, Frevert CW, Glenny RW, Altemeier WA. Mechanical ventilation modulates Toll-like receptor-3-induced lung inflammation via a MyD88-dependent, TLR4-independent pathway: a controlled animal study. BMC Pulm. Med. 2010; 10:57.
[5] Gray RD, Lucas CD, MacKellar A, Li F, Hiersemenzel K, Haslett C, Davidson DJ, Rossi AG. Activation of conventional protein kinase C (PKC) is critical in the generation of human neutrophil extracellular traps. J Inflamm (Lond).2013; 10(1):12.
[6] De Souza-Vieira T, Guimarães-Costa A, Rochael NC, Lira MN, Nascimento MT, de Souza Lima-Gomez P, Ma-riante RM, Persechini PM, Saraiva EM. Neutrophil extracellular traps release induced by Leishmania: role of PI3Kγ, ERK, PI3Kσ, PKC, and [Ca2+]. J Leukoc Biol. 2016; 100(4):801-10.
[7] Bertram A, Ley K. Protein kinase C isoforms in neutrophil adhesion and activation. Arch Immunol Ther Exp (Warsz). 2011; 59(2):79-87.
[8] Accelrys Discovery Studio Visualizer 4.0; Accelrys: SanDiego, CA, USA, 2012;
[9] Grodsky N, Li Y, Bouzida D, Love R, Jensen J, Nodes B, Nonomiya J, Grant S. Structure of the catalytic domain of human protein kinase C beta II complexed with a bisindolylmaleimide inhibitor. Biochemistry. 2006; 45(47):13970-81.
[10] Leonard TA, Rozycki B, Saidi LF, Hummer G, Hurley JH. Crystal structure and allosteric activation of protein kinase C beta II. Cell. 2011; 144(1):55-66.
[11] Starosyla SA, Volynets GP, Bdzhola VG, Yarmoluk SM. Ukrainian certificate of registration of copyright for software "PharmDeveloper" N 70098.
[12] Starosyla SA, Volynets GP, Bdzhola VG, Yarmoluk SM. The development of algorithm for pharmacophore model optimization and rescoring of pharmacophore screening results. Ukr Bioorg Acta. 2016; 1:24-34.