Biopolym. Cell. 2021; 37(5):369-378.
Molecular Biomedicine
Melatonin and fibroblast growth factor-2 potentiate the effects of human umbilical cord multipotent mesenchymal stromal cells in mice with cuprizone-induced demyelination
1Labunets I. F., 1Utko N. A., 1, 2Toporova O. K., 1Savosko S. I., 1, 2Pokholenko Ia. O., 1Panteleymonova T. N., 1Butenko G. M.
  1. State Institute of Genetic and Regenerative Medicine, NAMS of Ukraine
    67, Vyshhorodska Str., Kyiv, Ukraine, 04114
  2. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03143

Abstract

Aim. To study the influence of melatonin and recombinant human fibroblast growth factor (rhFGF-2) on human umbilical cord multipotent mesenchymal stromal cells (hMMSCs) effects at experimental demyelination. Methods. Adult mice were fed neurotoxin cuprizone for 3 weeks. hMMSCs (5x105 cells) were injected on the 10th day of cuprizone diet. Injections of melatonin or rhFGF-2 were started on the 11th day of cuprizone diet. We used cell culture, flow cytometric, spectrophotometric and histological methods, “open field” and “rotarod” tests. Results. Under the cuprizone influence the motor-, emotional activities and muscle tone decreased. The malondialdehyde (MDA) content in brain increased while the activity of antioxidant enzymes decreased. After injection of hMMSCs the number of crossed squares and grooming activity increased while MDA content decreased. Melatonin and rhFGF-2 injections enhanced the effect of cells on grooming activity and increased the glutathione reductase activity. Melatonin also increased the number of boluses, muscle tone and glutathione peroxidase activity. Conclusion. Melatonin and rhFGF-2 improve the effect of hMMSCs in cuprizone-treated mice. The effect of cells (MMSCs?) and melatonin combination is greater than that with rhFGF-2.
Keywords: cuprizone, MMSCs, melatonin, FGF-2, behavior, oxidative stress

References

[1] Praet J, Guglielmetti C, Berneman Z, Van det Linden A, Ponsaerts P. Cellular and molecular neuropathology of the cuprizone mouse model: Clinical relevance for multiple sclerosis. J Neubiorev. 2014; 47:485-505.
[2] Genc B, Bozan HR, Genc S, Genc K. Stem cell therapy for multiple sclerosis. Adv Exp Med Biol. 2019; 1084:145-74.
[3] Sarcar P, Rice CM, Scolding NJ. Cell therapy for multiple sclerosis. CNS Drugs. 2017; 31:453-69.
[4] Can A, Celikkan FT, Cinar O. Umbilical cord mesenchymal stromal cell transplantation: a systemic analysis of clinical trials. Cytotherapy. 2017; 19(12):1351-82.
[5] Putra A, Ridwan BR, Putridewi AI, Kustiyah AR, Wirastuti K, Sadyah NA, Rosdiana I, Muni D. The role of TNF-alpha induced MSCs on suppressive inflammation by increasing TGF-beta and IL-10. Open Access Maced J Med Sci. 2018; 6(10):1779-83.
[6] Labunets I, Utko N, Toporova O, Panteleymonova T, Rodnichenko A, Butenko G. The effects of human umbilical cord multipotent mesenchymal stromal cells on the behaviour and oxidative stress in the brain of mice of different ages with a cuprizone-induced model of demyelination. Cell Organ Transplantol. 2020; 8(1):38-42.
[7] Luchetti F, Canonico B, Bartolini D, Arcangeletti M, Ciffolilli S, Murdolo G. Piroddi M, Papa S, Reiter RJ, Galli F. Melatonin regulates mesenchymal stem cell differentiation: a review. J Pineal Res. 2014; 56:382-97.
[8] Hu Ch, Li L. Melatonin plays critical role in mesenchymal stem cell-based regenerative medicine in vitro and in vivo. Stem Cell Res Ther. 2019; 10:13.
[9] Zhang S, Chen S, Li Y, Liu Y. Melatonin as a promising agent of regulatory stem cell biology and its application in disease therapy. Pharmacol Res. 2017; 117:252-60.
[10] Manchester LC, Coto-Montes A, Boga JA, Andersen LPH, Zhou Z, Galano A, Vriend J, Tan D-X, Reiter RJ. Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res. 2015; 59(4):403-19.
[11] Sarlak G, Jenwitheesuk A, Chetsawang B, Govitrapog P. Effects of melatonin on nervous system aging: neurogenesis and neurodegeneration. J Pharmacol Sci. 2013; 123(1):9-24.
[12] Labunets IF, Rodnichenko AE. Melatonin effects in young and aging mice with the toxic cuprizone-induced demyelination. Adv gerontol. 2020; 10(1):41-9.
[13] Wurtman R. Multiple sclerosis, melatonin and neurobehavioral diseases. Front Endocr. 2017; 8:280.
[14] Rottlaender A, Villwock H, Addicks K, Kuerten S. Neuroprotective role of fibroblast growth factor-2 in experimental autoimmune encephalomyelitis. Immumology. 2011; 133(3):370-8.
[15] Labunets I, Rodnichenko A, Utko N, Panteleimonova T, Pokholenko Ya, Litoshenko Z, Butenko G. Effects of interleukin-10 and fibroblasts growth factor 2 in mice with toxic cuprizone model of demyelination. Cell and organ transplantology. 2019; 7(1): 25-31
[16] Huang Y, Dreyfusm ChF. The role of growth factors et a therapeutic approach to demyelinating disease. Exp Neurol. 2016; 283(PtB):531-40.
[17] Wang L, Li Xi-Xi, Chen Xi, Qin X-Y, Kardami E, Cheng Y. Anti-depresant-like effects of low- and high molecular weight FGF-2 on hronic unpredictable mild stress. Front Mol Neurosci. 2018; 11:377.
[18] Coutu DL, Galipeau J. Roles of FGF signaling in stem cell self-renewal, senescence and aging. Aging. 2011; 3(10):920-33.
[19] Labunets IF. Possibilities and prospects of the application of the in vivo and in vitro toxic cuprizone model for demyelination in experimental and clinical neurology (literature review and own research results). Ukr Neurol J. 2018; 2:63-8.
[20] Labunets IF, Rodnichenko AE, Melnyk NO, Rymar SE, Utko NA, Gavrulyk-Skyba GO, Butenko GM. Neuroprotective effect of the recombinant human leukemia inhibitory factor in mice with an experimental cuprizone model of multiple sclerosis: possible mechanisms. Biopolym Cell. 2018; 34(5):350-60.
[21] The Protein Protocols Handbook. Ed. JM Walker. Totowa, New Jersey: Humana Press Inc., 2002. 1139 p.
[22] Semenova VM, Tsymbalyuk VI, Liubich LD, Egorova DM, Stayno LP, Shevchuk OV, Vaslovich VV, Verbovska SA, Deryabina OG, Shuvalova NS, Pichkur LD. Structural changes in the brain of rats with experimental allergic encephalomyelitis after cryopreserved mesenchymal stem cells impact. World Med Biol. 2020;74(4):199-204.
[23] Wojtas E, Zachwieja A, Zwyrzykowska A, Kupczynski R, Marycz K. The application of mesenchymal progenitor stem cells in the reduction of oxidative stress in animals. Turk J Biol. 2017; 41:12-19.
[24] Mukai T, Mon Y, Shimazu T, Takahashi A, Tsunoda H, Yamaquchi S,Koryu Sh, Tojo A, Nagamura-Inoue T. Intravenous injection of umbilical cord-derived mesenchymal stromal cells attrnuates reactive gliosis and hypo-myelination in neonatal intraventricular hemorrhage model. Neuroscience. 2017; 355:175-87.
[25] Kim W, Hahn KR, Jung H, Kwon HJ, Nam SM, Kim JW, Park J, Yoo DY, Kim DW, Won M-H, Yoon Y, Hwang I. Melatonin ameliorates cuprizone-induced reduction of hippocampal neurogenesis, brain-derived neurotrophic factor, and phosphorylation cyclic AMP response element-binding protein in the mouse dentate gyrus. Brain Behav. 2019; 9(9): eo1388.
[26] Anderson G, Rodriguez M. Multiple sclerosis:the role of melatonin and N-acethylserotonin. Multiple sclerosis and related disorders. 2015; 4(2):112-23.
[27] Tang V, Cai B, Yuan F, He X, Lin X, Wang J, Wang Y, Yang GY. Melatonin pretreatment improves the survival and function of transplanted mesenchymal stem cells after focal cerebral ischemia. Cell Transplantation. 2014; 23(10):1279-1.
[28] Woodbury ME, Ikezu T. Fibroblast growth factor-2 signaling in neurogenesis and neurodegeneration. J Neuroimmune Pharmacol. 2014; 9(2):92-101.