Biopolym. Cell. 2021; 37(4):303-314.
Bioorganic Chemistry
Evaluation of the antiproliferative activity of selected 1,2,3-triazole-4-carboxylic acids — key fragments and precursors of antitumor 1,2,3-triazole-4-carboxamides
1Pokhodylo N. T., 1Matiychuk V. S.
  1. Ivan Franko National University of Lviv
    4, Hrushevskoho Str., Lviv, Ukraine, 79005

Abstract

Aim. To evaluate in vitro antiproliferative effect of selected 1,2,3-triazole-4-carboxylic acids, which are the key fragments and precursors of antitumor 1,2,3-triazole-4-carboxamides. Methods. Organic synthesis, in vitro cytotoxicity assay, MTT assay, spectrophotometry, statistical analysis. Results. The selected 1,2,3-triazole carboxylic acids and their esters synthesized according to a convenient synthetic procedure were tested for their anticancer activity in NCI60 cell lines within 9 cancer types at the 60 human tumour cell lines panel. These preliminary results allowed identifying the most active compounds and finding the structure-activity relations. The most promising 1,2,3-triazole-4-carboxylic fragments were selected for the design of 1,2,3-triazole-4-carboxamides for screening anticancer activity. Conclusions. The obtained results of antitumour activity of the studied derivatives are interesting for the discovery of selective and active anticancer agents among 1,2,3-triazole-4-carboxamides in terms of a fragment-based drug discovery (FBDD) concept, that proves the necessity of further studies.
Keywords: 1,2,3-triazoles, 1,2,3-triazole-4-carboxamides, 1,2,3-triazole-4-carboxylic acids, anticancer activity, cell proliferation

References

[1] Wheless JW, Vazquez B. Rufinamide: a novel broad-spectrum antiepileptic drug. Epilepsy Curr. 2010; 10: 1-6.
[2] Calderone V, Fiamingo FL, Amato G, Giorgi I, Livi O, Martelli A, Martinotti E. 1,2,3-Triazol-carboxanilides and 1,2,3-triazol-(N-benzyl)-carboxamides as BK-potassium channel activators. XII Eur J Med Chem. 2008; 43: 2618-26.
[3] Corrado C, Flugy AM, Taverna S, Raimondo S, Guggino G, Karmali R, De Leo G, Alessandro R. Carboxyamido-triazole-Orotate Inhibits the Growth of Imatinib-Resistant Chronic Myeloid Leukaemia Cells and Modulates Exosomes-Stimulated Angiogenesis. PLoS One. 2012; 7: 1-13.
[4] Elamari H, Meganem F, Herscovici J, Hirard C. Chemoselective preparation of disymmetric bistriazoles from bisalkynes. Tetrahedron Lett. 2011; 52: 558-60.
[5] Elamari H, Slimi R, Chabot GG, Quentin L, Scherman D, Girard C. Synthesis and in vitro evaluation of the potential anticancer activity of mono- and bis-1,2,3-triazole derivatives of bis-alkynes. Eur J Med Chem. 2013; 60: 360-4.
[6] Prasad B, Lakshma V, Srikanth PS, Baig MF, Reddy NS, Babu KS, Kamal A. Synthesis and biological evaluation of 1-benzyl-N-(2-(phenylamino)pyridin3-yl)-1H-1,2,3-triazole-4-carboxamides as antimitotic agents. Bioorg Chem. 2019; 83: 535-48.
[7] Reddy VG, Bonam SR, Reddy TS, Akunuri R, Naidu VGM, Nayak VL, Bhargava SK, Kumar HS, Srihari P, Kamal A. 4β-amidotriazole linked podophyllotoxin congeners: DNA topoisomerase-IIα inhibition and potential anti-cancer agents for prostate cancer. Eur J Med Chem. 2018; 144: 595-611.
[8] Pokhodylo N, Shyyka O, Matiychuk V. Synthesis and anticancer activity evaluation of new 1,2,3-triazole4-carboxamide derivatives. Med Chem Res. 2014; 23: 2426-38.
[9] Shyyka OYa, Pokhodylo NT, Finiuk NS. Anticancer activity evaluation of thie-no[3,2-e][1,2,3]triazolo[1,5-a]pyrimidines and thieno[2,3-e][1,2,3]triazolo[1,5-a]pyrimidine derivatives. Biopolym Cell. 2019; 35: 321-30.
[10] Pokhodylo N, Shyyka O, Finiuk N, Stoika R. Selected 5-amino-1-aryl-1H-1,2,3-triazole scaffolds as promising antiproliferative agents. Ukr Biochem J. 2020; 92 (5): 23-32.
[11] Wang L, Xu S, Liu X, Chen X, Xiong H, Hou S, Zou W, Tang Q, Zheng P, Zhu W. Discovery of thinopyrimi-dine-triazole conjugates as c-Met targeting and apoptosis inducing agents. Bioorg Chem, 2018; 77: 370-80.
[12] Zhou S, Liao H, Liu M, Feng G, Fu B, Li R, Cheng M, Zhao Y, Gong P. Discovery and biological evaluation of novel 6,7-disubstituted-4-(2-fluorophenoxy) quinoline derivatives possessing 1,2,3-triazole-4-carboxamide moie-ty as c-Met kinase inhibitor. Bioog Med Chem. 2014; 22: 6438-52.
[13] Taddei M, Ferrini S, Giannotti L, Corsi M, Manetti F, Giannini G, Vesci L, Milazzo FM, Alloatti D, Guglielmi MB, Castorina M. Synthesis and Evaluation of New Hsp90 Inhibitors Based on a 1,4,5-Trisubstituted 1,2,3-Triazole Scaffold. J Med Chem. 2014; 57: 2258-74.
[14] Duan H, Arora D, Li Y, Setiadi H, Xu D, Lim HY, Wang W. Identification of 1,2,3-triazole derivatives that protect pancreatic β cells against endoplasmic reticulum stress-mediated dysfunction and death through the inhibition of C/EBP-homologous protein expression. Bioorg Med Chem. 2016; 24: 2621-30.
[15] Bekheit MS, Mohamed HA, Abdel-Wahab BF, Fouad M A. Design and synthesis of new 1,4,5-trisubstituted tri-azole-bearing benzenesulphonamide moiety as selective COX-2 inhibitors. Med Chem Res 2021; 30: 1125-1138.
[16] Cohen M, Forte M, Sileikyte J, Nilsen A, Devereaux J, Bernardi P. Second generation inhibitors of mitochondrial permeability transition pore with improved plasma stability Patent WIPO 2021; WO 2021016594.
[17] Sileikyte J, Devereaux J, de Jong J, Schiavone M, Jones K, Nilsen A, Bernardi P, Forte M, Cohen M. S. Second-generation inhibitors of the mitochondrial permeability transition pore with improved plasma stability. ChemMedChem 2019; 14 (20): 1771-82.
[18] Obianom ON, Ai Y, Li Y, Yang W, Guo D, Yang H, Sakamuru S, Xia M, Xue F, Shu Y. Triazole-based inhibitors of the Wnt/β-catenin signaling pathway improve glucose and lipid metabolisms in diet-induced obese mice J Med Chem. 2019; 62: 727-41.
[19] Mo CY. "Make antibiotics great again: Combating drug resistance by targeting Lexa, a regulator of bacterial evolution" Publicly Accessible Penn Dissertations. 2016; 2489.
[20] Jadhav RP, Raundal HN, Patil AA, Bobade VD. Synthesis and biological evaluation of a series of 1,4-disubstituted 1,2,3-triazole derivatives as possible antimicrobial agents. J Saudi Chem Soc. 2017; 21: 152-9.
[21] Sall C, Ayé M, Bottzeck O, Praud A, Blache Y. Towards smart biocide-free anti-biofilm strategies: Click-based synthesis of cinnamide analogues as anti-biofilm compounds against marine bacteria. Bioorg Med Chem Lett. 2018; 28: 155-9.
[22] Pokhodylo N, Manko N, Finiuk N, Klyuchivska O, Matiychuk V, Obushak M, Stoika R. Primary disco-ve-ry of 1-aryl-5-substituted-1H-1,2,3-triazole-4-carboxamides as promising antimicrobial agents. J Mol Struct. 2021; Art. 131146.
[23] Wang Z-J, Gao Y, Hou Y-L, Zhang C, Yu S-J, Bian Q, Li Z-M, Zhao W-G. Design, synthesis, and fungicidal eval-uation of a series of novel 5-methyl-1H-1,2,3-trizole-4-carboxyl amide and ester analogues. Eur J Med Chem, 2014; 86: 87‑94.
[24] Maji K, Abbasi M, Podder D, Datta R, Haldar D. Potential antileishmanial activity of a triazole-based hybrid peptide against leishmania major. ChemistrySelect. 2018; 3: 10220-10225.
[25] de Freitas Silva M, Lima ET, Pruccoli L, Castro NG, Guimaraes MJR, da Silva FMR, Nadur NF, Luiz de Azevedo L, Kummerle AE, Guedes IA, Dardenne LE, Gontijo VS, Tarozzi A, Viegas C. Design, synthesis and biological evaluation of novel triazole N-acylhydrazone hybrids for Alzheimer's disease. Molecules 2020; 25(14): 3165.
[26] Eckhardt M, Gollner A, Langkopf E, Wagner H, Wiedenmayer D. Preparation of N-(1H,4H,5H,6H-cyclopenta[c]pyrazol-6-yl)heteroaromatic carboxamide derivatives as plasma kallikrein inhibi-tors. Patent WIPO 2020, WO 2020035540
[27] Krajczyk A, Kulinska K, Kulinski T, Hurst B.L, Day CW, Smee DF, Ostrowski T, Januszczyk P, Zeidler J. Antivi-rally active ribavirin analogues - 4,5-disubstituted 1,2,3-triazole nucleosides: biological evaluation against certain respiratory viruses and computational modelling. Antivir Chem Chemother. 2014; 23: 161-71.
[28] Gao H, Wu Y, Sun Y, Yang Y, Zhou G, Rao Y. Design, Synthesis, and Evaluation of Highly Potent FAK-Targeting PROTACs. ACS Med Chem Lett. 2020; 11 (10): 1855-62.
[29] Wang H, Huo C, Guo Y, Qi R, Wang Z. Degradation of bruton's tyrosine kinase (BTK) by conjugation of BTK inidbitors with E3 ligase ligand and methods of use. Patent WIPO 2021; WO 2021018018.
[30] Pokhodylo NT, Savka RD, Obushak MD. Synthesis of (1H-1,2,3-Triazol-1-yl)acetic acid derivatives. Russ J Org Chem. 2020; 56 (5): 1421-31.
[31] Pokhodylo N, Tupychak M, Shyyka O, Obushak M. Convenient synthesis of 2-(4-amino-1H-1,2,3-triazol-1-yl)acetic acid. Visnyk of the Lviv University. Series Chemistry. 2019; 60 (2): 285-90.
[32] Pokhodylo NT, Savka RD, Obushak MD. One-pot synthesis of alkyl 3-aryl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)propanoates. Russ J Org Chem. 2017; 53 (5): 734-7.
[33] Pokhodylo NT, Matiichuk VS, Obushak MD. Convenient synthesis of 1-norbornyl-5-R-1H-1,2,3-triazole-4-carboxylic acids. Russ J Org Chem. 2017; 53 (3): 481-3.
[34] Pokhodylo N.T, Shyyka O.Ya, Matiychuk V.S, Obushak M.D, Pavlyuk V.V. A novel base-solvent controlled che-moselective azide attack on an ester group versus keto in alkyl 3-substituted 3-oxopropanoates: Mechanistic in-sights. ChemistrySelect. 2017; 2 (21): 5871-6.
[35] Pokhodylo N. Synthesis of 1H-1,2,3-triazole-4-carboxylic acid derivatives with hydrogenated pyridine fragment Visnyk of the Lviv University. Series Chemistry. 2018; 59(2):286-93.
[36] Pokhodylo NT, Shyyka OY, Savka RD, Obushak MD. 2-Azido-1,3,4-thiadiazoles, 2-azido-1,3-thiazoles, and aryl azides in the synthesis of 1,2,3-triazole-4-carboxylic acids and their derivatives. Russ. J. Org. Chem. 2018; 54 (7): 1090-9.
[37] Pokhodylo NT, Savka RD, Pidlypnyi NI, Matiychuk VS, Obushak MD. Synthesis of 2-azido-1,3-thiazoles as 1,2,3-triazole Precursors. Synth Commun. 2010; 40 (3): 391-9.
[38] Liu X, Zu YG, Fu YJ, Yao LP, Gu CB, Wang W, Efferth T. Antimicrobial activity and cytotoxicity towards cancer cells of Melaleuca alternifolia (tea tree) oil. Eur Food Res Technol. 2009; 229: 247-53.
[39] Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D, Hose C, Langley J, Cronise P, Vaigro-Wolff A, et al. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J Natl Cancer Inst. 1991; 83(11): 757-66.
[40] Boyd MR, Paull KD. Some practical considerations and applications of the National Cancer Institute in vitro anticancer drug discovery screen. Drug Dev Res. 1995; 34(2): 91-109.
[41] Boyd MR. The NCI In vitro anticancer drug discovery screen. In: Ed. Teicher BA. Anticancer Drug Development Guide. Cancer Drug Discovery and Development. Totowa, NJ: Humana Press, 1997. 23-43.
[42] Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer. 2006; 6(10): 813-23.
[43] Pokhodylo N, Shyyka O, Matiychuk V. Synthesis of 1,2,3-triazole derivatives and evaluation of their anticancer activity. Sci Pharm. 2013; 81(3): 663-76.