Biopolym. Cell. 2021; 37(4):270-277.
Molecular Biomedicine
MHRT expression during remote ischemic preconditioning in patients with coronary artery disease
1Khetsuriani M., 2Ioffe N. O., 1Drevytska T. I., 3Niekrasova V. O., 1Dosenko V. E.
  1. O. O. Bogomoletz Institute of Physiology, NAS of Ukraine
    4, Akademika Bogomoltsa Str., Kyiv, Ukraine, 01004
  2. Amosov National Institute of Cardiovascular Surgery, National Academy of Medical Sciences of Ukraine
    6, Mykoly Amosova Str., Kyiv, Ukraine, 03038
  3. Educational and Scientific Center "Institute of Biology and Medicine",
    Taras Shevchenko National University of Kyiv
    64/13, Volodymyrska Str., Kyiv, Ukraine, 01601


Aim. To access the effect of remote ischemic preconditioning (RIPC) on hemodynamic parameters and expression of lncRNA MHRT in patients with coronary artery disease during isolated coronary artery bypass graft surgery. Methods. The hemodynamic parameters of 29 patients with sham and RIPC procedures were analyzed. RIPC was modulated by three cycles of blocking blood flow in the arm for 5 minutes followed by restoring it for another 5 minutes. Expression of MHRT was measured in myocardial tissue and plasma by real-time polymerase chain reaction. Results. Hemodynamic parameters of patients in the RIPC-group had higher (p < 0.05) values of cardiac index, systolic blood pressure, diastolic blood pressure, stroke volume index compared to the sham group. Systemic vascular resistance index decreased in RIPC-group. The expression level of MHRT in the myocardium was 2.5 times lower than in the sham group (p<0.05). MHRT expression in plasma fall[s] significantly, by more 15 times, (p < 0.0001) in the RIPC-group. Conclusions. A decrease in MHRT expression can be a consequence of the protective effect of RIPC and can be used as a cardiac biomarker.
Keywords: long noncoding RNA, ischemic preconditioning, MHRT, coronary artery disease, coronary artery bypass grafting


[1] McClanahan T, Nao B, Wolke L, Martin B, Metz T, Gallagher K. Brief renal occlusion and reperfusion reduces myocardial infarct size in rabbits. FASEB J. 1993;7:A118.
[2] Kharbanda RK, Mortensen UM, White PA, Kristiansen SB, Schmidt MR, Hoschtitzky JA, Vogel M, Sorensen K, Redington AN, MacAllister R. Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation. 2002;106(23):2881-3.
[3] Kakimoto M, Kawaguchi M, Sakamoto T, Inoue S, Furuya H, Nakamura M, Konishi N. Evaluation of rapid ischemic preconditioning in a rabbit model of spinal cord ischemia. Anesthesiology. 2003;99(5):1112-7.
[4] Dave KR, Saul I, Prado R, Busto R, Perez-Pinzon MA. Remote organ ischemic preconditioning protect brain from ischemic damage following asphyxial cardiac arrest. Neurosci Lett. 2006;404(1-2):170-5.
[5] Jin RL, Li WB, Li QJ, Zhang M, Xian XH, Sun XC, Zhao HG, Qi J. The role of extracellular signal-regulated kinases in the neuroprotection of limb ischemic preconditioning. Neurosci Res. 2006;55(1):65-73.
[6] Steiger HJ, Hänggi D. Ischaemic preconditioning of the brain, mechanisms and applications. Acta Neurochir (Wien). 2007;149(1):1-10.
[7] Cheung MM, Kharbanda RK, Konstantinov IE, Shimizu M, Frndova H, Li J, Holtby HM, Cox PN, Smallhorn JF, Van Arsdell GS, Redington AN. Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery: first clinical application in humans. J Am Coll Cardiol. 2006 ;47(11):2277-82.
[8] Hausenloy DJ, Mwamure PK, Venugopal V, Harris J, Barnard M, Grundy E, Ashley E, Vichare S, Di Salvo C, Kolvekar S, Hayward M, Keogh B, MacAllister RJ, Yellon DM. Effect of remote ischaemic preconditioning on myocardial injury in patients undergoing coronary artery bypass graft surgery: a randomised controlled trial. Lancet. 2007;370(9587):575-9.
[9] Amort T, Soulière MF, Wille A, Jia XY, Fiegl H, Wörle H, et al. Long non-coding RNAs as targets for cytosine methylation. RNA Biol. 2013;10(6):1003-8.
[10] Yoon JH, Abdelmohsen K, Gorospe M. Posttranscriptional gene regulation by long noncoding RNA. J Mol Biol. 2013;425(19):3723-30.
[11] Grote P, Wittler L, Hendrix D, Koch F, Währisch S, Beisaw A, et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell. 2013;24(2):206-14.
[12] Vausort M, Wagner DR, Devaux Y. Long noncoding RNAs in patients with acute myocardial infarction. Circ Res. 2014;115(7):668-77.
[13] Han P, Li W, Lin CH, Yang J, Shang C, Nuernberg ST, Jin KK, Xu W, Lin CY, Lin CJ, Xiong Y, Chien H, Zhou B, Ashley E, Bernstein D, Chen PS, Chen HV, Quertermous T, Chang CP. A long noncoding RNA protects the heart from pathological hypertrophy. Nature. 2014;514(7520):102-106.
[14] Zhang J, Gao C, Meng M, Tang H. Long Noncoding RNA MHRT Protects Cardiomyocytes against H2O2-Induced Apoptosis. Biomol Ther (Seoul). 2016;24(1):19-24.
[15] Hoole SP, Heck PM, Sharples L, Khan SN, Duehmke R, Densem CG, Clarke SC, Shapiro LM, Schofield PM, O'Sullivan M, Dutka DP. Cardiac Remote Ischemic Preconditioning in Coronary Stenting (CRISP Stent) Study: a prospective, randomized control trial. Circulation. 2009;119(6):820-7.
[16] Kontaraki JE, Marketou ME, Kochiadakis GE, Maragkoudakis S, Konstantinou J, Vardas PE, Parthenakis FI. The long non-coding RNAs MHRT, FENDRR and CARMEN, their expression levels in peripheral blood mono-nuclear cells in patients with essential hypertension and their relation to heart hypertrophy. Clin Exp Pharmacol Physiol. 2018;45(11):1213-1217.
[17] Xuan L, Sun L, Zhang Y, Huang Y, Hou Y, Li Q, Guo Y, Feng B, Cui L, Wang X, Wang Z, Tian Y, Yu B, Wang S, Xu C, Zhang M, Du Z, Lu Y, Yang BF. Circulating long non-coding RNAs NRON and MHRT as novel predictive biomarkers of heart failure. J Cell Mol Med. 2017;21(9):1803-1814.
[18] Hang CT, Yang J, Han P, Cheng HL, Shang C, Ashley E, Zhou B, Chang CP. Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature. 2010;466(7302):62-7.
[19] Motomura A, Shimizu M, Kato A, Motomura K, Yamamichi A, Koyama H, Ohka F, Nishikawa T, Nishimura Y, Hara M, Fukuda T, Bando Y, Nishimura T, Wakabayashi T, Natsume A. Remote ischemic preconditioning protects human neural stem cells from oxidative stress. Apoptosis. 2017;22(11):1353-61.
[20] Yildirim F, Iskesen I, Kurdal AT, Ozturk T, Taneli F, Gozukara C, Ozbakkaloglu A. Is "Attenuation of Oxidative Stress" Helpful to Understand the Mechanism of Remote Ischemic Preconditioning in Cardiac Surgery? J Cardiothorac Vasc Anesth. 2016;30(1):134-40.
[21] Allaouchiche B, Debon R, Goudable J, Chassard D, Duflo F. Oxidative stress status during exposure to propofol, sevoflurane and desflurane. Anesth Analg. 2001;93(4):981-5.
[22] Liu XR, Cao L, Li T, Chen LL, Yu YY, Huang WJ, Liu L, Tan XQ. Propofol attenuates H2O2-induced oxidative stress and apoptosis via the mitochondria- and ER-medicated pathways in neonatal rat cardiomyocytes. Apoptosis. 2017;22(5):639-646.
[23] Li Q, Shao Y, Zhang X, Zheng T, Miao M, Qin L, Wang B, Ye G, Xiao B, Guo J. Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer. Tumour Biol. 2015;36(3):2007-12.