Biopolym. Cell. 2021; 37(2):89-104.
Structure and Function of Biopolymers
DNA loop organization in dorsal root ganglion neurons: effects of peripheral inflammation
- Educational and Scientific Center "Institute of Biology and Medicine",
Taras Shevchenko National University of Kyiv
64/13, Volodymyrska Str., Kyiv, Ukraine, 01601 - O. O. Bogomoletz Institute of Physiology, NAS of Ukraine
4, Akademika Bogomoltsa Str., Kyiv, Ukraine, 01004
Abstract
The loop domain organization of chromatin plays an important role in transcription regulation and is known to be dependent on cell functional states. Aim. To investigate possible DNA loop reorganization in dorsal ganglion neurons upon inflammatory pain. Methods. We used single cell gel electrophoresis (the comet assay) to analyze the kinetics of the DNA loop migration from nucleoids obtained from lysed neurons. Results. Independently of inflammation, the neurons are characterized by relatively low amount of DNA in the comet tails due to a low content of DNA in the loops, which may be resolved by the comet assay (up to ~400 kb). Upon inflammation the contour length of the loops essentially decreases, in parallel with a respective increase of DNA in relatively short (up to ~100 kb) loops. Conclusions. A reorganization of the DNA loops upon inflammation could be suggested to be accompanied by rather significant changes in transcription regulation.
Keywords: DNA loops, neurons, comet assay, dorsal root ganglion, pain
Full text: (PDF, in English)
References
[1]
Dekker J, Marti-Renom MA, Mirny LA. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet. 2013;14(6):390-403.
[3]
Dekker J, Mirny L. The 3D Genome as Moderator of Chromosomal Communication. Cell. 2016;164(6):1110-1121.
[4]
Dixon JR, Gorkin DU, Ren B. Chromatin Domains: The Unit of Chromosome Organization. Mol Cell. 2016;62(5):668-80.
[5]
Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, Aiden EL. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014;159(7):1665-80.
[6]
Sanborn AL, Rao SS, Huang SC, Durand NC, Huntley MH, Jewett AI, Bochkov ID, Chinnappan D, Cutkosky A, Li J, Geeting KP, Gnirke A, Melnikov A, McKenna D, Stamenova EK, Lander ES, Aiden EL. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc Natl Acad Sci U S A. 2015;112(47):E6456-65.
[7]
Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA. Formation of Chromosomal Domains by Loop Extrusion. Cell Rep. 2016;15(9):2038-49.
[8]
Vian L, Pękowska A, Rao SSP, Kieffer-Kwon KR, Jung S, Baranello L, Huang SC, El Khattabi L, Dose M, Pruett N, Sanborn AL, Canela A, Maman Y, Oksanen A, Resch W, Li X, Lee B, Kovalchuk AL, Tang Z, Nelson S, Di Pierro M, Cheng RR, Machol I, St Hilaire BG, Durand NC, Shamim MS, Stamenova EK, Onuchic JN, Ruan Y, Nussenzweig A, Levens D, Aiden EL, Casellas R. The Energetics and Physiological Impact of Cohesin Extrusion. Cell. 2018;173(5):1165-1178.e20.
[9]
Hansen AS, Cattoglio C, Darzacq X, Tjian R. Recent evidence that TADs and chromatin loops are dynamic structures. Nucleus. 2018;9(1):20-32.
[10]
Nora EP, Goloborodko A, Valton AL, Gibcus JH, Uebersohn A, Abdennur N, Dekker J, Mirny LA, Bruneau BG. Targeted Degradation of CTCF Decouples Local Insulation of Chromosome Domains from Genomic Compartmentalization. Cell. 2017;169(5):930-944.e22.
[11]
Hansen AS, Hsieh TS, Cattoglio C, Pustova I, Saldaña-Meyer R, Reinberg D, Darzacq X, Tjian R. Distinct Classes of Chromatin Loops Revealed by Deletion of an RNA-Binding Region in CTCF. Mol Cell. 2019;76(3):395-411.e13.
[12]
Gould HJ 3rd, England JD, Soignier RD, Nolan P, Minor LD, Liu ZP, Levinson SR, Paul D. Ibuprofen blocks changes in Na v 1.7 and 1.8 sodium channels associated with complete Freund's adjuvant-induced inflammation in rat. J Pain. 2004;5(5):270-80.
[13]
Voilley N, de Weille J, Mamet J, Lazdunski M. Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J Neurosci. 2001;21(20):8026-33.
[14]
Ikeda-Miyagawa Y, Kobayashi K, Yamanaka H, Okubo M, Wang S, Dai Y, Yagi H, Hirose M, Noguchi K. Peripherally increased artemin is a key regulator of TRPA1/V1 expression in primary afferent neurons. Mol Pain. 2015;11:8.
[15]
Schwartz ES, Xie A, La JH, Gebhart GF. Nociceptive and inflammatory mediator upregulation in a mouse model of chronic prostatitis. Pain. 2015;156(8):1537-1544.
[16]
Belan PV, Usachev YM, Duzhyy DE, Ivanova SY, Tarasenko AN, Voitenko NV. Role of T-type Ca2+ channels in painful diabetic neuropathy. Neurophysiology. 2019; 51:455-61.
[17]
Czimmerer Z, Horvath A, Daniel B, Nagy G, Cuaranta-Monroy I, Kiss M, Kolostyak Z, Poliska S, Steiner L, Giannakis N, Varga T, Nagy L. Dynamic transcriptional control of macrophage miRNA signature via inflammation responsive enhancers revealed using a combination of next generation sequencing-based approaches. Biochim Biophys Acta Gene Regul Mech. 2018;1861(1):14-28.
[18]
Afanasieva K, Sivolob A. Physical principles and new applications of comet assay. Biophys Chem. 2018;238:1-7.
[19]
Afanasieva K, Chopei M, Zazhytska M, Vikhreva M, Sivolob A. DNA loop domain organization as revealed by single-cell gel electrophoresis. Biochim Biophys Acta. 2013;1833(12):3237-44.
[20]
Afanasieva K, Chopei M, Lozovik A, Semenova A, Lukash L, Sivolob A. DNA loop domain organization in nucleoids from cells of different types. Biochem Biophys Res Commun. 2017;483(1):142-6.
[21]
Afanasieva KS, Olefirenko VV, Sivolob AV. DNA loops after cell lysis resemble chromatin loops in an intact nucleus. Ukr Biochem J. 2018; 90(5):43–9.
[22]
Afanasieva KS, Semenova AY, Lukash LL, Sivolob AV. DNA loop organization in glioblastoma T98G cells at their different functional states. Biopolym Cell. 2018;34(6):426–34.
[23]
Afanasieva K, Olefirenko A, Martyniak A, Lukash L, Sivolob A. DNA loop domain rearrangements in blast transformed human lymphocytes and lymphoid leukaemic Jurkat T cells. Ukr Biochem J. 2020;92(5):62–9.
[24]
Duzhyy DE, Viatchenko-Karpinski VY, Khomula EV, Voitenko NV, Belan PV. Upregulation of T-type Ca2+ channels in long-term diabetes determines increased excitability of a specific type of capsaicin-insensitive DRG neurons. Mol Pain. 2015;11:29.
[25]
Afanasieva K, Zazhytska M, Sivolob A. Kinetics of comet formation in single-cell gel electrophoresis: loops and fragments. Electrophoresis. 2010;31(3):512-9.
[26]
Afanasieva K, Chopei M, Sivolob A. Single nucleus versus single-cell gel electrophoresis: kinetics of DNA track formation. Electrophoresis. 2015;36(7-8):973-7.