Biopolym. Cell. 2021; 37(1):73-82.
Bioinformatics
Changes in the human placental transcriptome during the physiological course of pregnancy
- Institute of Molecular Biology and Genetics, NAS of Ukraine
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03143
Abstract
Aim. To determine the changes of gene expression in human placenta during the physiological course of pregnancy. Methods. The integrative analysis of publicly available data.
Results. We have revealed that between the first and second trimesters of gestation the main changes relate to immune processes, morphogenesis and intercellular communication through the
surface receptors of the cellular membrane. In the interval between the second and third trimesters, the main changes concern the regulation of the response to external stimuli, metabolic processes, morphogenesis of individual tissues, regulation of signaling pathways via transmembrane serine / threonine protein kinase receptors. Conclusion. The changes in gene expression in human placenta in the course of physiological gestation will serve as a reliable
control with the changes during the pathological course of gestation.
Keywords: human placenta, transcriptome, integrative analysis
Full text: (PDF, in English)
References
[1]
Vousden N, Lawley E, Seed PT, Gidiri MF, Goudar S, Sandall J, Chappell LC, Shennan AH; CRADLE Trial Collaborative Group. Incidence of eclampsia and related complications across 10 low- and middle-resource geographical regions: Secondary analysis of a cluster randomised controlled trial. PLoS Med. 2019;16(3):e1002775.
[2]
Ivanov II, Cheripco MV, Kosolapova NV, Prochan EN. Preeclampsia: speciality of pathogenesis and therapeutic tactics. Tavri Med Biol Vestn. 2012; 15(2), 2(58): 273–86.
[3]
Rana S, Lemoine E, Granger JP, Karumanchi SA. Preeclampsia: Pathophysiology, Challenges, and Perspectives. Circ Res. 2019;124(7):1094-1112.
[4]
Jóźwik M, Lipka A. Recent progress in human placental transcriptomics. Dev Period Med. 2019;23(2):104-108.
[5]
Yong HEJ, Chan SY. Current approaches and developments in transcript profiling of the human placenta. Hum Reprod Update. 2020;26(6):799-840.
[6]
Knöfler M, Haider S, Saleh L, Pollheimer J, Gamage TKJB, James J. Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell Mol Life Sci. 2019;76(18):3479-3496.
[7]
Szilagyi A, Gelencser Z, Romero R, Xu Y, Kiraly P, Demeter A, Palhalmi J, Gyorffy BA, Juhasz K, Hupuczi P, Kekesi KA, Meinhardt G, Papp Z, Draghici S, Erez O, Tarca AL, Knöfler M, Than NG. Placenta-Specific Genes, Their Regulation During Villous Trophoblast Differentiation and Dysregulation in Preterm Preeclampsia. Int J Mol Sci. 2020;21(2):628.
[8]
Brew O, Sullivan MH, Woodman A. Comparison of Normal and Pre-Eclamptic Placental Gene Expression: A Systematic Review with Meta-Analysis. PLoS One. 2016;11(8):e0161504.
[9]
Pinu FR, Beale DJ, Paten AM, Kouremenos K, Swarup S, Schirra HJ, Wishart D. Systems Biology and Multi-Omics Integration: Viewpoints from the Metabolomics Research Community. Metabolites. 2019;9(4):76.
[11]
Brazma A, Parkinson H, Sarkans U, Shojatalab M, Vilo J, Abeygunawardena N, Holloway E, Kapushesky M, Kemmeren P, Lara GG, Oezcimen A, Rocca-Serra P, Sansone SA. ArrayExpress--a public repository for microarray gene expression data at the EBI. Nucleic Acids Res. 2003;31(1):68-71.
[12]
Lykhenko OK, Frolova AO, Obolenskaya MY. Creation of gene expression database on preeclampsia-affected human placenta. Biopolym Cell. 2017; 33(6): 442–52.
[13]
Gautier L, Cope L, Bolstad BM, Irizarry RA. affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004;20(3):307-15.
[14]
Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 2003;31(4):e15.
[15]
Zhao Y, Wong L, Goh WWB. How to do quantile normalization correctly for gene expression data analyses. Sci Rep. 2020;10(1):15534.
[16]
Du P, Kibbe WA, Lin SM. lumi: a pipeline for processing Illumina microarray. Bioinformatics. 2008;24(13):1547-8.
[17]
Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28(6):882-3.
[18]
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.
[19]
Smyth GK. limma: linear models for microarray data. In: Gentleman R, Carey VJ, Huber W, Irizarry RA, Dudoit S (eds) Bioinformatics and computational biology solutions using R and bioconductor. Statistics for Biology and Health. Springer, New York, NY. 2005
[20]
Clauset A, Newman ME, Moore C. Finding community structure in very large networks. Phys Rev E Stat Nonlin Soft Matter Phys. 2004;70(6 Pt 2):066111.
[21]
Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607-D613.
[22]
Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019;47(D1):D419-D426.
[23]
Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6(7):e21800.
[24]
Tersigni C, Meli F, Neri C, Iacoangeli A, Franco R, Lanzone A, Scambia G, Di Simone N. Role of Human Leukocyte Antigens at the Feto-Maternal Interface in Normal and Pathological Pregnancy: An Update. Int J Mol Sci. 2020;21(13):4756.
[25]
Ander SE, Diamond MS, Coyne CB. Immune responses at the maternal-fetal interface. Sci Immunol. 2019;4(31):eaat6114.
[26]
Wessels I, Maywald M, Rink L. Zinc as a Gatekeeper of Immune Function. Nutrients. 2017;9(12):1286.
[28]
Scott GF. Morphogenesis and cell adhesion. Development Biology, 6th edition. Sunderland (MA): “Sinauer Associates”, 2000;325–35 p.
[29]
Azagidi AS, Ibitoye BO, Makinde ON, Idowu BM, Aderibigbe AS. Fetal Gestational Age Determination using Ultrasound Placental Thickness. J Med Ultrasound. 2019;28(1):17-23.
[30]
Ramesh G, MacLean AG, Philipp MT. Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediators Inflamm. 2013;2013:480739.
[31]
Borowski S, Tirado-Gonzalez I, Freitag N, Garcia MG, Barrientos G, Blois SM. Altered glycosylation contributes to placental dysfunction upon early disruption of the NK cell-DC dynamics. Front Immunol. 2020;11:1316. .
[32]
Camm EJ, Botting KJ, Sferruzzi-Perri AN. Near to one's heart: the intimate relationship between the placenta and fetal heart. Front Physiol. 2018;9:629.
[33]
Moustakas A. Encyclopedic reference of genomics and proteomics in molecular medicine: receptor Serine/Threonine Kinases. Springer, 2005: 1603–08.
[34]
Rodriguez R, Konovets I, Ralchenko S, Kharkhota M, Kostyuk A, Kosach V, Voronina I, Filimonova N, Obolenskaya M. A low-cost mass spectrometry-based approach for quantifying purines in placental explants. Int J Mass Spectrom. 2021; 460: 116490.
[35]
Moore T, Dveksler GS. Pregnancy-specific glycoproteins: complex gene families regulating maternal-fetal interactions. Int J Dev Biol. 2014;58(2-4):273-80.