Biopolym. Cell. 2019; 35(2):99-106.
Structure and Function of Biopolymers
Identification of a novel S6K1 splice variant coding for the p60-S6K1 isoform
1Zaiets I. V., 1Holiar V. V., 1Filonenko V. V.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03143

Abstract

Aim. To identify a splicing mRNA of S6K1 kinase specific for the p60-S6K1 isoform alone. Methods. RT-PCR, DNA sequencing, Western blotting. Results. RT-PCR analysis of total RNA extracted from MCF-7 cells and subsequent DNA sequencing revealed a novel S6K1 splice variant that possesses additional exon 1a and encodes the p60 isoform of S6K1 only. Moreover, RT-PCR and western blotting were applied to estimate the expression levels of the p60-S6K1 mRNA and protein. A heterogeneous expression of the p60-S6K1 transcript was observed; it did not correlate with the total S6K1 mRNA expression and with the protein content of p60-S6K1 in the studied cell lines. Conclusions. We provide the evidence for the existence of a novel S6K1 splice variant coding for the p60-S6K1 isoform. The cell can employ two distinct pathways of the p60-S6K1 expression based on alternative translation of mRNA common for the main S6K1 isoforms mRNA and/or translation of the novel p60-S6K1 specific mRNA. Since the levels of the p60-S6K1 transcript expression do not correlate with the expression of total S6K1 mRNA, it is plausible that the p60-S6K1 isoform plays a role distinct from that of other isoforms in cellular physiology, as well as in the development of S6K1-related pathologies.
Keywords: p60-S6K1 transcript, alternative splicing, gene expression

References

[1] Fenton TR, Gout IT. Functions and regulation of the 70kDa ribosomal S6 kinases. Int J Biochem Cell Biol. 2011;43(1):47-59.
[2] Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12(1):21-35.
[3] Couch FJ, Wang XY, Wu GJ, Qian J, Jenkins RB, James CD. Localization of PS6K to chromosomal region 17q23 and determination of its amplification in breast cancer. Cancer Res. 1999;59(7):1408-11.
[4] Bärlund M, Monni O, Kononen J, Cornelison R, Torhorst J, Sauter G, Kallioniemi OLLI-P, Kallioniemi A. Multiple genes at 17q23 undergo amplification and overexpression in breast cancer. Cancer Res. 2000;60(19):5340-4.
[5] Bärlund M, Forozan F, Kononen J, Bubendorf L, Chen Y, Bittner ML, Torhorst J, Haas P, Bucher C, Sauter G, Kallioniemi OP, Kallioniemi A. Detecting activation of ribosomal protein S6 kinase by complementary DNA and tissue microarray analysis. J Natl Cancer Inst. 2000;92(15):1252-9.
[6] Miyakawa M, Tsushima T, Murakami H, Wakai K, Isozaki O, Takano K. Increased expression of phosphorylated p70S6 kinase and Akt in papillary thyroid cancer tissues. Endocr J. 2003;50(1):77-83.
[7] Lytvyn DI, Dudchenko TM, Lyzogubov VV, Usenko VS, Nespryadko SV, Vinnitskaya AB, Vorobyova LI, Pal’chevskiy SS, Filonenko VV, Pogrebnoy PV. Expression of α- and β-isoforms of p70S6 kinase in human endometrial tumors. Exp Oncol. 2003;25(4):274-8.
[8] Lyzogubov VV, Usenko VS, Khojaenko YS, Lytvyn DI, Soldatkina MA, Rodnin NV, Filonenko VV, Pogribniy PV. Immunohistochemical analysis of p70S6 kinase α in human thyroid tissue upon pathology. Exp Oncol. 2003;25(4):304-6.
[9] Lyzogubov VV, Lytvyn DI, Dudchenko TM, Lubchenko NV, Pogrybniy PV, Nespryadko SV, Vinnitska AB, Usenko VS, Gout IT, Filonenko VV. Immunohistochemical analysis of S6K1 and S6K2 expression in endometrial adenocarcinomas. Exp Oncol. 2004;26(4):287-93.
[10] van der Hage JA, van den Broek LJ, Legrand C, Clahsen PC, Bosch CJ, Robanus-Maandag EC, van de Velde CJ, van de Vijver MJ. Overexpression of P70 S6 kinase protein is associated with increased risk of locoregional recurrence in node-negative premenopausal early breast cancer patients. Br J Cancer. 2004;90(8):1543-50.
[11] Lyzogubov V, Khozhaenko Y, Usenko V, Antonjuk S, Ovcharenko G, Tikhonkova I, Filonenko V. Immunohistochemical analysis of Ki-67, PCNA and S6K1/2 expression in human breast cancer. Exp Oncol. 2005;27(2):141-4.
[12] Pantuck AJ, Seligson DB, Klatte T, Yu H, Leppert JT, Moore L, O'Toole T, Gibbons J, Belldegrun AS, Figlin RA. Prognostic relevance of the mTOR pathway in renal cell carcinoma: implications for molecular patient selection for targeted therapy. Cancer. 2007;109(11):2257-67.
[13] Noh WC, Kim YH, Kim MS, Koh JS, Kim HA, Moon NM, Paik NS. Activation of the mTOR signaling pathway in breast cancer and its correlation with the clinicopathologic variables. Breast Cancer Res Treat. 2008;110(3):477-83.
[14] Zhou L, Huang Y, Li J, Wang Z. The mTOR pathway is associated with the poor prognosis of human hepatocellular carcinoma. Med Oncol. 2010;27(2):255-61.
[15] Hiramatsu M, Ninomiya H, Inamura K, Nomura K, Takeuchi K, Satoh Y, Okumura S, Nakagawa K, Yamori T, Matsuura M, Morikawa T, Ishikawa Y. Activation status of receptor tyrosine kinase downstream pathways in primary lung adenocarcinoma with reference of KRAS and EGFR mutations. Lung Cancer. 2010;70(1):94-102.
[16] Pérez-Tenorio G, Karlsson E, Waltersson MA, Olsson B, Holmlund B, Nordenskjöld B, Fornander T, Skoog L, Stål O. Clinical potential of the mTOR targets S6K1 and S6K2 in breast cancer. Breast Cancer Res Treat. 2011;128(3):713-23.
[17] Li PD, Zhang WJ, Zhang MY, Yuan LJ, Cha YL, Ying XF, Wu G, Wang HY. Overexpression of RPS6KB1 predicts worse prognosis in primary HCC patients. Med Oncol. 2012;29(5):3070-6.
[18] Karlsson E, Magić I, Bostner J, Dyrager C, Lysholm F, Hallbeck AL, Stål O, Lundström P. Revealing Different Roles of the mTOR-Targets S6K1 and S6K2 in Breast Cancer by Expression Profiling and Structural Analysis. PLoS One. 2015;10(12):e0145013.
[19] Pópulo H, Soares P, Faustino A, Rocha AS, Silva P, Azevedo F, Lopes JM. mTOR pathway activation in cutaneous melanoma is associated with poorer prognosis characteristics. Pigment Cell Melanoma Res. 2011;24(1):254-7.
[20] Ben-Hur V, Denichenko P, Siegfried Z, Maimon A, Krainer A, Davidson B, Karni R. S6K1 alternative splicing modulates its oncogenic activity and regulates mTORC1. Cell Rep. 2013;3(1):103-15.
[21] Karni R, de Stanchina E, Lowe SW, Sinha R, Mu D, Krainer AR. The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat Struct Mol Biol. 2007;14(3):185-93.
[22] Kim D, Akcakanat A, Singh G, Sharma C, Meric-Bernstam F. Regulation and localization of ribosomal protein S6 kinase 1 isoforms. Growth Factors. 2009;27(1):12-21.
[23] Zaiets IV, Sivchenko AS, Khoruzhenko AI, Savinska LO, Filonenko VV. The p60-S6K1 isoform of ribosomal protein S6 kinase 1 is a product of alternative mRNA translation. Ukr Biochem J. 2018;90(4):25-35.
[24] Savinska LO, Kijamova RG, Pogrebnoy PV, Ovcharenko GV, Gout IT, Filonenko VV. Comparative characterization of S6 kinase α and β isoforms expression in mammalian tissues. Biopolym Cell. 2001;17(5):374-9.