Biopolym. Cell. 2018; 34(6):435-444.
Structure and Function of Biopolymers
Expression and purification of full-length Alanyl-tRNA-synthetase from Thermus thermophilus HB27
1Rybak M. Yu., 1Priss A. E., 1Gudzera O. I., 2Kovalchuk A. O., 1Kryklyvyi I. A., 1Tukalo M. A.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03143
  2. Educational and Scientific Center "Institute of Biology and Medicine",
    Taras Shevchenko National University of Kyiv
    64/13, Volodymyrska Str., Kyiv, Ukraine, 01601

Abstract

Aim. To gain insight into structural and functional properties of alanyl-tRNA,synthetase (AlaRS), we genetically engineered constructs for expression and purification of full-length AlaRS and checked its activity in aminoacylation assays. Methods. The genomic DNA for the AlaS gene from the T. thermophilus (HB 27 strain) was amplified by PCR and cloned into vectors with and without a histidine tag. To optimize conditions for the protein expression in E. coli and to develop efficient purification procedure, the molecular biology techniques were applied. AlaRS was purified by affinity and size-exclusion chromatography. The molecular weight of enzyme was determined by gel filtration. Results. The expression and purification conditions for recombinant AlaRS were optimized. Approximately 1.5 mg of the pure active recombinant enzyme can be obtained from 1 L of bacterial culture. AlaRS from T. thermophilus is a dimer in solution with an experimental MW of 204 kDa. Conclusions. The purified recombinant enzyme will be used for further studies on the functional kinetics and structure of the crystal complex with tRNA.
Keywords: aminoacyl-tRNA-synthetase, AlaRS from T. thermophilus, expression of recombinant protein, protein purification

References

[1] Fersht AR, Kaethner MM. Mechanism of aminoacylation of tRNA. Proof of the aminoacyl adenylate pathway for the isoleucyl- and tyrosyl-tRNA synthetases from Escherichia coli K12. Biochemistry. 1976;15(4):818-23.
[2] Ibba M, Soll D. Aminoacyl-tRNA synthesis. Annu Rev Biochem. 2000;69:617-50. Review.
[3] Schimmel P. Classes of aminoacyl-tRNA synthetases and the establishment of the genetic code. Trends Biochem Sci. 1991;16(1):1-3.
[4] Eriani G, Delarue M, Poch O, Gangloff J, Moras D. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature. 1990;347(6289):203-6.
[5] Schimmel PR, Söll D. Aminoacyl-tRNA synthetases: general features and recognition of transfer RNAs. Annu Rev Biochem. 1979;48:601-48.
[6] Naganuma M, Sekine S, Fukunaga R, Yokoyama S. Unique protein architecture of alanyl-tRNA synthetase for aminoacylation, editing, and dimerization. Proc Natl Acad Sci U S A. 2009;106(21):8489-94.
[7] Guo M, Chong YE, Beebe K, Shapiro R, Yang XL, Schimmel P. The C-Ala domain brings together editing and aminoacylation functions on one tRNA. Science. 2009;325(5941):744-7.
[8] Putney SD, Sauer RT, Schimmel PR. Purification and properties of alanine tRNA synthetase from Escherichia coli A tetramer of identical subunits. J Biol Chem. 1981;256(1):198-204.
[9] Lechler A, Martin A, Zuleeg T, Limmer S, Kreutzer R. A biologically active 53 kDa fragment of overproduced alanyl-tRNA synthetase from Thermus thermophilus HB8 specifically interacts with tRNA Ala acceptor helix. Nucleic Acids Res. 1997;25(14):2737-44.
[10] Dignam SS, Dignam JD. Glycyl- and alanyl-tRNA synthetases from Bombyx mori. Purification and properties. J Biol Chem. 1984;259(7):4043-8.
[11] Putney SD, Meléndez DL, Schimmel PR. Cloning, partial sequencing, and in vitro transcription of the gene for alanine tRNA synthetase. J Biol Chem. 1981;256(1):205-11.
[12] Jasin M, Regan L, Schimmel P. Modular arrangement of functional domains along the sequence of an aminoacyl tRNA synthetase. Nature. 1983 Dec 1-7;306(5942):441-7.
[13] Wu MX, Filley SJ, Xiong J, Lee JJ, Hill KA. A cysteine in the C-terminal region of alanyl-tRNA synthetase is important for aminoacylation activity. Biochemistry. 1994;33(40):12260-6.
[14] Tsui WC, Fersht AR. Probing the principles of amino acid selection using the alanyl-tRNA synthetase from Escherichia coli. Nucleic Acids Res. 1981;9(18):4627-37.
[15] Swairjo MA, Otero FJ, Yang XL, Lovato MA, Skene RJ, McRee DE, Ribas de Pouplana L, Schimmel P. Alanyl-tRNA synthetase crystal structure and design for acceptor-stem recognition. Mol Cell. 2004;13(6):829-41.
[16] Guo M, Chong YE, Shapiro R, Beebe K, Yang XL, Schimmel P. Paradox of mistranslation of serine for alanine caused by AlaRS recognition dilemma. Nature. 2009;462(7274):808-12.
[17] Guo M, Shapiro R, Schimmel P, Yang XL. Introduction of a leucine half-zipper engenders multiple high-quality crystals of a recalcitrant tRNA synthetase. Acta Crystallogr D Biol Crystallogr. 2010;66(Pt 3):243-50.
[18] Dignam JD, Guo J, Griffith WP, Garbett NC, Holloway A, Mueser T. Allosteric interaction of nucleotides and tRNA(ala) with E. coli alanyl-tRNA synthetase. Biochemistry. 2011;50(45):9886-900.
[19] Beebe K, Mock M, Merriman E, Schimmel P. Distinct domains of tRNA synthetase recognize the same base pair. Nature. 2008;451(7174):90-3.
[20] Naganuma M, Sekine S, Chong YE, Guo M, Yang XL, Gamper H, Hou YM, Schimmel P, Yokoyama S. The selective tRNA aminoacylation mechanism based on a single G•U pair. Nature. 2014;510(7506):507-11.
[21] Sun L, Gomes AC, He W, Zhou H, Wang X, Pan DW, Schimmel P, Pan T, Yang XL. Evolutionary Gain of Alanine Mischarging to Noncognate tRNAs with a G4:U69 Base Pair. J Am Chem Soc. 2016;138(39):12948-12955.
[22] Sun L, Song Y, Blocquel D, Yang XL, Schimmel P. Two crystal structures reveal design for repurposing the C-Ala domain of human AlaRS. Proc Natl Acad Sci U S A. 2016;113(50):14300-14305. PubMed Central
[23] Chong YE, Guo M, Yang XL, Kuhle B, Naganuma M, Sekine SI, Yokoyama S, Schimmel P. Distinct ways of G:U recognition by conserved tRNA binding motifs. Proc Natl Acad Sci U S A. 2018;115(29):7527-7532.
[24] Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. Journal Mol Biol. 1961; 3(2): 208-IN1.
[25] The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017;45(D1):D158-D169.
[26] Benson DA, Karsch-Mizrachi I, Clark K, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2012;40(Database issue):D48-53.
[27] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54.
[28] Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A Protein identification and analysis tools on the ExPASy server. The proteomics protocols handbook. Springer. 2005;-571-607.
[29] Fukunaga R, Yokoyama S. Crystallization and preliminary X-ray crystallographic study of alanyl-tRNA synthetase from the archaeon Archaeoglobus fulgidus. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2007;63(Pt 3):224-8.