Biopolym. Cell. 2018; 34(4):303-312.
Genomics, Transcriptomics and Proteomics
Genetic and epigenetic alterations of human chromosome 3, investigated by NotI-microarrays in seven types of epithelial cancers
1Gerashchenko G. V., 1Gordiyuk V. V., 1, 2Kashuba V. I.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03143
  2. Karolinska Institute
    Stockholm SE-17177, Sweden

Abstract

Aim. To identify common and specific genetic/epigenetic changes of human chromosome 3, using the data of NotI-microarrays in seven types of epithelial cancers. Methods. We used descriptive statistics for the comparative analysis of NotI-microarray data from seven types of epithelial cancers. Results. The analysis of the NotI-microarrays showed significant changes (deletion or methylation) in 74 genes/loci in seven different epithelial cancers, namely colorectal, ovarian, renal, lung, breast, cervical and prostate. Five genes from the 3p14-3p24 region (FOXP1, LRRC3B, NKiRAS1, RBSP3, ZIC4) were altered in all cancer types. For fifteen genes, deletion/methylation was found in a majority of tumors. For example, ITGA9, GORASP1, IQSEC1, CGGBP1, NBEAL2 and VHL are localized in the 3p12-3p26 region; PPP2R3A, FGF12, ALDH1L1, GATA2 and PLCL2 are localized the 3q13-3q28 region. Twenty-two genes out of 74 studied showed alterations specific for a single type of tumor. The largest number, 13 genes/loci was found in the prostate cancer. This suggests specific mechanisms of prostate cancer development. Conclusions. NotI-microarrays for human chromosome 3 allowed to identify several common genetic/epigenetic alterations and also tumor-specific changes in seven types of epithelial cancer.
Keywords: NotI-microarray, colorectal cancer, ovarian cancer, renal cancer, lung cancer, cervical cancer, breast cancer, prostate cancer, TSG, methylation, deletion, human chromosome 3

References

[1] Zabarovsky ER, Ernberg I, Li J, Protopopov AI, Kashuba VI, Wahlestedt C, Zabarovska VI. Novel methods for high throughput genome analysis and use of these methods for identifying the species composition of complex microbiological systems. International patent application PCT. SE02. 00788 with priority date April 20, 2001 (US provisional patent application US60. 284925).
[2] Zabarovsky ER, Allikmets R, Kholodnyuk I, Zabarovska VI, Paulsson N, Bannikov VM, Kashuba VI, Dean M, Kisselev LL, Klein G. Construction of representative NotI linking libraries specific for the total human genome and for human chromosome 3. Genomics. 1994;20(2):312-6.
[3] Pavlova TV, Kashuba VI, Muravenko OV, Yenamandra SP, Ivanova TA, Zabarovskaia VI, Rakhmanaliev ER, Petrenko LA, Pronina IV, Loginov VI, Iurkevich OIu, Kiselev LL, Zelenin AV, ZabarovskiÄ­ ER. Use of NotI microarrays in analysis of epigenetic and structural changes in epithelial tumor genomes by the example of human chromosome 3. Mol Biol (Mosk). 2009;43(2):313-20.
[4] Gordiyuk VV, Kondratov AG, Gerashchenko GV, Kashuba VI. Novel epigenetic markers of early epithelial tumor growth and prognosis. Biopolym Cell. 2013; 29(3):215-20.
[5] Uzawa N, Yoshida MA, Hosoe S, Oshimura M, Amagasa T, Ikeuchi T. Functional evidence for involvement of multiple putative tumor suppressor genes on the short arm of chromosome 3 in human oral squamous cell carcinogenesis. Cancer Genet Cytogenet. 1998;107(2):125-31.
[6] Kok K, Naylor SL, Buys CH. Deletions of the short arm of chromosome 3 in solid tumors and the search for suppressor genes. Adv Cancer Res. 1997;71:27-92.
[7] Zabarovsky ER, Lerman MI, Minna JD. Tumor suppressor genes on chromosome 3p involved in the pathogenesis of lung and other cancers. Oncogene. 2002;21(45):6915-35.
[8] Kuroki T, Trapasso F, Yendamuri S, Matsuyama A, Alder H, Mori M, Croce CM. Allele loss and promoter hypermethylation of VHL, RAR-beta, RASSF1A, and FHIT tumor suppressor genes on chromosome 3p in esophageal squamous cell carcinoma. Cancer Res. 2003;63(13):3724-8.
[9] Dreijerink K, Braga E, Kuzmin I, Geil L, Duh FM, Angeloni D, Zbar B, Lerman MI, Stanbridge EJ, Minna JD, Protopopov A, Li J, Kashuba V, Klein G, Zabarovsky ER. The candidate tumor suppressor gene, RASSF1A, from human chromosome 3p21.3 is involved in kidney tumorigenesis. Proc Natl Acad Sci U S A. 2001;98(13):7504-9.
[10] Gerashchenko GV, Gordiyuk VV, Skrypkina IY, Kvasha SM, Kolesnik OO, Ugryn DD, Pavlova TV, Zabarovsky ER, Rynditch AV, Kashuba VI. Screening of epigenetic and genetic disturbances of human chromosome 3 genes in colorectal cancer. Ukr Biokhim Zh (1999). 2009;81(4):81-7.
[11] Gordiyuk VV, Gerashchenko GV, Skrypkina IYa, Symonchuk OV, Pavlova TV, Ugryn DD, Manzhura EP, Vakulenko GO, Zabarovsky ER, Rynditch AV, Kashuba VI. Identification of chromosome 3 epigenetic and genetic abnormalities and gene expression changes in ovarian cancer. Biopolym Cell. 2008; 24(4):323-32.
[12] Kashuba V, Dmitriev AA, Krasnov GS, Pavlova T, Ignatjev I, Gordiyuk VV, Gerashchenko AV, Braga EA, Yenamandra SP, Lerman M, Senchenko VN, Zabarovsky E. NotI microarrays: novel epigenetic markers for early detection and prognosis of high grade serous ovarian cancer. Int J Mol Sci. 2012;13(10):13352-77.
[13] Dmitriev AA, Rudenko EE, Kudryavtseva AV, Krasnov GS, Gordiyuk VV, Melnikova NV, Stakhovsky EO, Kononenko OA, Pavlova LS, Kondratieva TT, Alekseev BY, Braga EA, Senchenko VN, Kashuba VI. Epigenetic alterations of chromosome 3 revealed by NotI-microarrays in clear cell renal cell carcinoma. Biomed Res Int. 2014;2014:735292.
[14] Dmitriev AA, Kashuba VI, Haraldson K, Senchenko VN, Pavlova TV, Kudryavtseva AV, Anedchenko EA, Krasnov GS, Pronina IV, Loginov VI, Kondratieva TT, Kazubskaya TP, Braga EA, Yenamandra SP, Ignatjev I, Ernberg I, Klein G, Lerman MI, Zabarovsky ER. Genetic and epigenetic analysis of non-small cell lung cancer with NotI-microarrays. Epigenetics. 2012;7(5):502-13.
[15] Senchenko VN, Liu J, Loginov W, Bazov I, Angeloni D, Seryogin Y, Ermilova V, Kazubskaya T, Garkavtseva R, Zabarovska VI, Kashuba VI, Kisselev LL, Minna JD, Lerman MI, Klein G, Braga EA, Zabarovsky ER. Discovery of frequent homozygous deletions in chromosome 3p21.3 LUCA and AP20 regions in renal, lung and breast carcinomas. Oncogene. 2004;23(34):5719-28.
[16] Kashuba VI, Skripkina IIa, Saraev DV, Gordiiuk VV, Vinnitskaia AB, Tsyba LA, PogrebnoÄ­ PV, Blinov VM, ZabarovskiÄ­ ER, Ryndich AV. [Identification of changes in gene loci potentially associated with cervical cancer using NotI microarrays]. Ukr Biokhim Zh (1999). 2006;78(2):113-20.
[17] Senchenko VN, Kisseljova NP, Ivanova TA, Dmitriev AA, Krasnov GS, Kudryavtseva AV, Panasenko GV, Tsitrin EB, Lerman MI, Kisseljov FL, Kashuba VI, Zabarovsky ER. Novel tumor suppressor candidates on chromosome 3 revealed by NotI-microarrays in cervical cancer. Epigenetics. 2013;8(4):409-20.
[18] Dmitriev AA, Rosenberg EE, Krasnov GS, Gerashchenko GV, Gordiyuk VV, Pavlova TV, Kudryavtseva AV, Beniaminov AD, Belova AA, Bondarenko YN, Danilets RO, Glukhov AI, Kondratov AG, Alexeyenko A, Alekseev BY, Klein G, Senchenko VN, Kashuba VI. Identification of Novel Epigenetic Markers of Prostate Cancer by NotI-Microarray Analysis. Dis Markers. 2015;2015:241301.
[19] Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc. 1995; 57:289-300.
[20] Dunwell TL, Hesson LB, Pavlova T, Zabarovska V, Kashuba V, Catchpoole D, Chiaramonte R, Brini AT, Griffiths M, Maher ER, Zabarovsky E, Latif F. Epigenetic analysis of childhood acute lymphoblastic leukemia. Epigenetics. 2009;4(3):185-93.
[21] Kandimalla R, van Tilborg AA, Kompier LC, Stumpel DJ, Stam RW, Bangma CH, Zwarthoff EC. Genome-wide analysis of CpG island methylation in bladder cancer identified TBX2, TBX3, GATA2, and ZIC4 as pTa-specific prognostic markers. Eur Urol. 2012;61(6):1245-56.
[22] Davis AJ, Yan Z, Martinez B, Mumby MC. Protein phosphatase 2A is targeted to cell division control protein 6 by a calcium-binding regulatory subunit. J Biol Chem. 2008;283(23):16104-14.
[23] Ornitz DM, Itoh N. The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip Rev Dev Biol. 2015;4(3):215-66.
[24] Li H, Du Y, Zhang D, Wang LN, Yang C, Liu B, Wang WJ, Shi L, Hong WG, Zhang L, Yang YX. Identification of novel DNA methylation markers in colorectal cancer using MIRA-based microarrays. Oncol Rep. 2012;28(1):99-104.
[25] Bhushan A, Singh A, Kapur S, Borthakar BB, Sharma J, Rai AK, Kataki AC, Saxena S. Identification and Validation of Fibroblast Growth Factor 12 Gene as a Novel Potential Biomarker in Esophageal Cancer Using Cancer Genomic Datasets. OMICS. 2017;21(10):616-631.
[26] Oleinik NV, Krupenko NI, Krupenko SA. Epigenetic Silencing of ALDH1L1, a Metabolic Regulator of Cellular Proliferation, in Cancers. Genes Cancer. 2011;2(2):130-9.
[27] Fitzgerald TL, Rangan S, Dobbs L, Starr S, Sigounas G. The impact of Aldehyde dehydrogenase 1 expression on prognosis for metastatic colon cancer. J Surg Res. 2014;192(1):82-9.
[28] Tam KJ, Dalal K, Hsing M, Cheng CW, Khosravi S, Yenki P, Tse C, Peacock JW, Sharma A, Chiang YT, Wang Y, Cherkasov A, Rennie PS, Gleave ME, Ong CJ. Androgen receptor transcriptionally regulates semaphorin 3C in a GATA2-dependent manner. Oncotarget. 2017;8(6):9617-9633.
[29] Rodriguez-Bravo V, Carceles-Cordon M, Hoshida Y, Cordon-Cardo C, Galsky MD, Domingo-Domenech J. The role of GATA2 in lethal prostate cancer aggressiveness. Nat Rev Urol. 2017;14(1):38-48.
[30] Katsumura KR, Ong IM, DeVilbiss AW, Sanalkumar R, Bresnick EH. GATA Factor-Dependent Positive-Feedback Circuit in Acute Myeloid Leukemia Cells. Cell Rep. 2016;16(9):2428-41.
[31] Kampen KR, Scherpen FJ, Garcia-Manero G, Yang H, Kaspers GJ, Cloos J, Zwaan CM, van den Heuvel-Eibrink MM, Kornblau SM, De Bont ES. EphB1 Suppression in Acute Myelogenous Leukemia: Regulating the DNA Damage Control System. Mol Cancer Res. 2015;13(6):982-92.
[32] Brantley-Sieders DM. Clinical relevance of Ephs and ephrins in cancer: lessons from breast, colorectal, and lung cancer profiling. Semin Cell Dev Biol. 2012;23(1):102-8.
[33] Kholodnyuk ID, Kozireva S, Kost-Alimova M, Kashuba V, Klein G, Imreh S. Down regulation of 3p genes, LTF, SLC38A3 and DRR1, upon growth of human chromosome 3-mouse fibrosarcoma hybrids in severe combined immunodeficiency mice. Int J Cancer. 2006;119(1):99-107.
[34] Anedchenko EA, Dmitriev AA, Krasnov GS, Kondrat'eva TT, Kopantsev EP, Vinogradova TV, Zinov'eva MV, Zborovskaia IB, PolotskiÄ­ BE, Sakharova OV, Kashuba VI, ZabarovskiÄ­ ER, Senchenko VN. [Down-regulation of RBSP3/CTDSPL, NPRL2/G21, RASSF1A, ITGA9, HYAL1 and HYAL2 genes in non-small cell lung cancer]. Mol Biol (Mosk). 2008;42(6):965-76.
[35] Loginov VI, Dmitriev AA, Senchenko VN, Pronina IV, Khodyrev DS, Kudryavtseva AV, Krasnov GS, Gerashchenko GV, Chashchina LI, Kazubskaya TP, Kondratieva TT, Lerman MI, Angeloni D, Braga EA, Kashuba VI. Tumor Suppressor Function of the SEMA3B Gene in Human Lung and Renal Cancers. PLoS One. 2015;10(5):e0123369.
[36] Rudenko EE, Gerashchenko GV, Lapska YV, Bogatyrova OO, Vozianov SO, Zgonnyk YM, Kashuba VI. Genetic and epigenetic changes of GPX1 and GPX3 in human clear-cell renal cell carcinoma. Biopolym Cell. 2013; 29(5):395–401.
[37] Rudenko E, Kondratov O, Gerashchenko G, Lapska Y, Kravchenko S, Koliada O, Vozianov S, Zgonnyk Y, Kashuba V. Aberrant expression of selenium-containing glutathione peroxidases in clear cell renal cell carcinomas. Exp Oncol. 2015;37(2):105-10.