Biopolym. Cell. 2017; 33(6):434-441.
Genomics, Transcriptomics and Proteomics
Cardiospecific knockout of αE-catenin leads to violation of the neonatal cardiomyocytes maturation via β-catenin and Yap signaling
- Institute of Molecular Biology and Genetics, NAS of Ukraine
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
Abstract
Aim. To study the αE-catenin gene function in neonatal cardiomyocytes proliferation and maturation. Methods. Conditional knockout approach, histological (H&E and acridine orange staining) and molecular genetics (qPCR) methods were used. Result. The hetero- and homozygous embryonic cardiospecific knockout of αE-catenin is associated with an increased level of neonatal cardiomyocytes proliferation and a decreased binucleated cells frequency. Knockout of αE-catenin leads to up-regulation of the β-catenin- and Yap-target genes expression (Axin2, c-Myc, Tcf-4, CyclinD1, Ctgf and Tnfrsf1b). Conclusion. αE-catenin is involved in the regulation of proliferation and maturation of neonatal cardiomyocytes via modulation of the activity of β-catenin- and Yap-dependent transcription.
Keywords: heart maturation, αE-catenin, Wnt signaling, HIPPO signaling, cardiomyocyte
Full text: (PDF, in English)
References
[1]
Jamora C, Fuchs E. Intercellular adhesion, signalling and the cytoskeleton. Nat Cell Biol. 2002;4(4):E101-8.
[2]
Stepniak E, Radice GL, Vasioukhin V. Adhesive and signaling functions of cadherins and catenins in vertebrate development. Cold Spring Harb Perspect Biol. 2009;1(5):a002949.
[3]
Yonemura S, Wada Y, Watanabe T, Nagafuchi A, Shibata M. alpha-Catenin as a tension transducer that induces adherens junction development. Nat Cell Biol. 2010;12(6):533-42.
[4]
Torres M, Stoykova A, Huber O, Chowdhury K, Bonaldo P, Mansouri A, Butz S, Kemler R, Gruss P. An alpha-E-catenin gene trap mutation defines its function in preimplantation development. Proc Natl Acad Sci U S A. 1997;94(3):901-6.
[5]
Piven OO, Kostetskii IE, Macewicz LL, Kolomiets YM, Radice GL, Lukash LL. Requirement for N-cadherin-catenin complex in heart development. Exp Biol Med (Maywood). 2011;236(7):816-22.
[6]
Sheikh F, Chen Y, Liang X, Hirschy A, Stenbit AE, Gu Y, Dalton ND, Yajima T, Lu Y, Knowlton KU, Peterson KL, Perriard JC, Chen J. alpha-E-catenin inactivation disrupts the cardiomyocyte adherens junction, resulting in cardiomyopathy and susceptibility to wall rupture. Circulation. 2006;114(10):1046-55.
[7]
Schlegelmilch K, Mohseni M, Kirak O, Pruszak J, Rodriguez JR, Zhou D, Kreger BT, Vasioukhin V, Avruch J, Brummelkamp TR, Camargo FD. Yap1 acts downstream of α-catenin to control epidermal proliferation. Cell. 2011;144(5):782-95.
[8]
Li J, Gao E, Vite A, Yi R, Gomez L, Goossens S, van Roy F, Radice GL. Alpha-catenins control cardiomyocyte proliferation by regulating Yap activity. Circ Res. 2015;116(1):70-9.
[9]
Choi SH, Estarás C, Moresco JJ, Yates JR 3rd, Jones KA. α-Catenin interacts with APC to regulate β-catenin proteolysis and transcriptional repression of Wnt target genes. Genes Dev. 2013;27(22):2473-88.
[10]
Giannini AL, Vivanco Md, Kypta RM. alpha-catenin inhibits beta-catenin signaling by preventing formation of a beta-catenin*T-cell factor*DNA complex. J Biol Chem. 2000;275(29):21883-8.
[11]
Balatskyy VV, Akimenko I, Macewicz LL, Piven OO, Lukash LL. α-E-catenin in histological reconstruction of myocardium with aging. Faktori eksperimental'noi evolucii organizmiv. 2016; 18: 219–22.
[12]
Balatskyi VV, Palchevska OL, Macewicz LL, Piven OO. α-E-catenin is a potential regulator of canonical Wnt and Hippo-signalings in myocardium. Visnik ukrains'kogo tovaristva genetikiv i selekcioneriv. 2016; 14(2):168–73.
[13]
Zhang Y, Del Re DP. A growing role for the Hippo signaling pathway in the heart. J Mol Med (Berl). 2017;95(5):465-472.
[14]
Zhou Q, Li L, Zhao B, Guan KL. The hippo pathway in heart development, regeneration, and diseases. Circ Res. 2015;116(8):1431-47.
[15]
Piven' OO, Pal'chevs'ka OL, Lukash LL. [The Wnt/beta-catenin signaling in embryonic cardiogenesis, postnatal development and myocardium reconstruction]. Tsitol Genet. 2014;48(5):72-83.
[16]
Piven OO, Winata CL. The canonical way to make a heart: β-catenin and plakoglobin in heart development and remodeling. Exp Biol Med (Maywood). 2017;242(18):1735-1745.
[17]
Soonpaa MH, Kim KK, Pajak L, Franklin M, Field LJ. Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol. 1996;271(5 Pt 2):H2183-9.
[18]
Li F, Wang X, Capasso JM, Gerdes AM. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol. 1996;28(8):1737-46.
[19]
Rhee J, Ryu JH, Kim JH, Chun CH, Chun JS. α-Catenin inhibits β-catenin-T-cell factor/lymphoid enhancing factor transcriptional activity and collagen type II expression in articular chondrocytes through formation of Gli3R.α-catenin.β-catenin ternary complex. J Biol Chem. 2012;287(15):11751-60.
[20]
Barry SP, Davidson SM, Townsend PA. Molecular regulation of cardiac hypertrophy. Int J Biochem Cell Biol. 2008;40(10):2023-39.
[21]
Kontaridis MI, Geladari E V., Geladari C V. Pathways to myocardial hypertrophy In: Cokkinos D. (eds) Introduction to Translational Cardiovascular Research. 2015 Springer, Cham: 167-186