Biopolym. Cell. 2017; 33(6):434-441.
Genomics, Transcriptomics and Proteomics
Cardiospecific knockout of αE-catenin leads to violation of the neonatal cardiomyocytes maturation via β-catenin and Yap signaling
1Balatskyi V. V., 1Ruban T. P., 1Macewicz L. L., 1Piven O. O.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

Aim. To study the αE-catenin gene function in neonatal cardiomyocytes proliferation and maturation. Methods. Conditional knockout approach, histological (H&E and acridine orange staining) and molecular genetics (qPCR) methods were used. Result. The hetero- and homozygous embryonic cardiospecific knockout of αE-catenin is associated with an increased level of neonatal cardiomyocytes proliferation and a decreased binucleated cells frequency. Knockout of αE-catenin leads to up-regulation of the β-catenin- and Yap-target genes expression (Axin2, c-Myc, Tcf-4, CyclinD1, Ctgf and Tnfrsf1b). Conclusion. αE-catenin is involved in the regulation of proliferation and maturation of neonatal cardiomyocytes via modulation of the activity of β-catenin- and Yap-dependent transcription.
Keywords: heart maturation, αE-catenin, Wnt signaling, HIPPO signaling, cardiomyocyte

References

[1] Jamora C, Fuchs E. Intercellular adhesion, signalling and the cytoskeleton. Nat Cell Biol. 2002;4(4):E101-8.
[2] Stepniak E, Radice GL, Vasioukhin V. Adhesive and signaling functions of cadherins and catenins in vertebrate development. Cold Spring Harb Perspect Biol. 2009;1(5):a002949.
[3] Yonemura S, Wada Y, Watanabe T, Nagafuchi A, Shibata M. alpha-Catenin as a tension transducer that induces adherens junction development. Nat Cell Biol. 2010;12(6):533-42.
[4] Torres M, Stoykova A, Huber O, Chowdhury K, Bonaldo P, Mansouri A, Butz S, Kemler R, Gruss P. An alpha-E-catenin gene trap mutation defines its function in preimplantation development. Proc Natl Acad Sci U S A. 1997;94(3):901-6.
[5] Piven OO, Kostetskii IE, Macewicz LL, Kolomiets YM, Radice GL, Lukash LL. Requirement for N-cadherin-catenin complex in heart development. Exp Biol Med (Maywood). 2011;236(7):816-22.
[6] Sheikh F, Chen Y, Liang X, Hirschy A, Stenbit AE, Gu Y, Dalton ND, Yajima T, Lu Y, Knowlton KU, Peterson KL, Perriard JC, Chen J. alpha-E-catenin inactivation disrupts the cardiomyocyte adherens junction, resulting in cardiomyopathy and susceptibility to wall rupture. Circulation. 2006;114(10):1046-55.
[7] Schlegelmilch K, Mohseni M, Kirak O, Pruszak J, Rodriguez JR, Zhou D, Kreger BT, Vasioukhin V, Avruch J, Brummelkamp TR, Camargo FD. Yap1 acts downstream of α-catenin to control epidermal proliferation. Cell. 2011;144(5):782-95.
[8] Li J, Gao E, Vite A, Yi R, Gomez L, Goossens S, van Roy F, Radice GL. Alpha-catenins control cardiomyocyte proliferation by regulating Yap activity. Circ Res. 2015;116(1):70-9.
[9] Choi SH, Estarás C, Moresco JJ, Yates JR 3rd, Jones KA. α-Catenin interacts with APC to regulate β-catenin proteolysis and transcriptional repression of Wnt target genes. Genes Dev. 2013;27(22):2473-88.
[10] Giannini AL, Vivanco Md, Kypta RM. alpha-catenin inhibits beta-catenin signaling by preventing formation of a beta-catenin*T-cell factor*DNA complex. J Biol Chem. 2000;275(29):21883-8.
[11] Balatskyy VV, Akimenko I, Macewicz LL, Piven OO, Lukash LL. α-E-catenin in histological reconstruction of myocardium with aging. Faktori eksperimental'noi evolucii organizmiv. 2016; 18: 219–22.
[12] Balatskyi VV, Palchevska OL, Macewicz LL, Piven OO. α-E-catenin is a potential regulator of canonical Wnt and Hippo-signalings in myocardium. Visnik ukrains'kogo tovaristva genetikiv i selekcioneriv. 2016; 14(2):168–73.
[13] Zhang Y, Del Re DP. A growing role for the Hippo signaling pathway in the heart. J Mol Med (Berl). 2017;95(5):465-472.
[14] Zhou Q, Li L, Zhao B, Guan KL. The hippo pathway in heart development, regeneration, and diseases. Circ Res. 2015;116(8):1431-47.
[15] Piven' OO, Pal'chevs'ka OL, Lukash LL. [The Wnt/beta-catenin signaling in embryonic cardiogenesis, postnatal development and myocardium reconstruction]. Tsitol Genet. 2014;48(5):72-83.
[16] Piven OO, Winata CL. The canonical way to make a heart: β-catenin and plakoglobin in heart development and remodeling. Exp Biol Med (Maywood). 2017;242(18):1735-1745.
[17] Soonpaa MH, Kim KK, Pajak L, Franklin M, Field LJ. Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol. 1996;271(5 Pt 2):H2183-9.
[18] Li F, Wang X, Capasso JM, Gerdes AM. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol. 1996;28(8):1737-46.
[19] Rhee J, Ryu JH, Kim JH, Chun CH, Chun JS. α-Catenin inhibits β-catenin-T-cell factor/lymphoid enhancing factor transcriptional activity and collagen type II expression in articular chondrocytes through formation of Gli3R.α-catenin.β-catenin ternary complex. J Biol Chem. 2012;287(15):11751-60.
[20] Barry SP, Davidson SM, Townsend PA. Molecular regulation of cardiac hypertrophy. Int J Biochem Cell Biol. 2008;40(10):2023-39.
[21] Kontaridis MI, Geladari E V., Geladari C V. Pathways to myocardial hypertrophy In: Cokkinos D. (eds) Introduction to Translational Cardiovascular Research. 2015 Springer, Cham: 167-186