Biopolym. Cell. 2017; 33(4):291-301.
Bioorganic Chemistry
Hit identification of CK2 inhibitors by virtual screening
1, 2Protopopov M. V., 2Starosyla S. A., 2Borovykov O. V., 2Sapelkin V. N., 3Bilokin Y. V., 2Bdzhola V. G., 2Yarmoluk S. M.
  1. Taras Shevchenko National University of Kyiv
    64, Volodymyrska Str., Kyiv, Ukraine, 01601
  2. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
  3. OTAVA
    400 Applewood Crescent, Unit 100, Vaughan, Ontario, L4K 0C3 Canada

Abstract

Aim. To search for new CK2 inhibitors by virtual screening. Methods. Virtual screening of a small organic compounds library was performed by molecular docking using the Autodock 4.2.6 package and pharmacophore screening with the “PharmDeveloper” program. The compound activity was determined by in vitro biochemical tests using γ-P32 ATP. Results. 298 compounds were selected for biochemical testing according to the results of virtual screening. In vitro experiments showed that 18 compounds have inhibitory activity against CK2 with IC50 in the range of 1.4 to 20 μM. The active compounds belonged to 15 chemical classes. Conclusions. A number of effective CK2 inhibitors were found using molecular modeling and biochemical testing methods. LE values of these compounds were higher than 0.3 that makes these compounds excellent candidates for further drug development.
Keywords: protein kinase CK2, molecular docking, pharmacophore modeling, virtual screening, in vitro testing.

References

[1] Raaf J, Brunstein E, Issinger OG, Niefind K. The interaction of CK2alpha and CK2beta, the subunits of protein kinase CK2, requires CK2beta in a preformed conformation and is enthalpically driven. Protein Sci. 2008;17(12):2180-6.
[2] Bian Y, Ye M, Wang C, Cheng K, Song C, Dong M, Pan Y, Qin H, Zou H. Global screening of CK2 kinase substrates by an integrated phosphoproteomics workflow. Sci Rep. 2013;3:3460.
[3] Faust M, Jung M, Günther J, Zimmermann R, Montenarh M. Localization of individual subunits of protein kinase CK2 to the endoplasmic reticulum and to the Golgi apparatus. Mol Cell Biochem. 2001;227(1-2):73-80.
[4] Faust M, Montenarh M. Subcellular localization of protein kinase CK2. A key to its function? Cell Tissue Res. 2000;301(3):329-40.
[5] St-Denis NA, Litchfield DW. Protein kinase CK2 in health and disease: From birth to death: the role of protein kinase CK2 in the regulation of cell proliferation and survival. Cell Mol Life Sci. 2009;66(11-12):1817-29.
[6] Ahmad KA, Wang G, Unger G, Slaton J, Ahmed K. Protein kinase CK2--a key suppressor of apoptosis. Adv Enzyme Regul. 2008;48:179-87.
[7] Montenarh M. Protein kinase CK2 and angiogenesis. Adv Clin Exp Med. 2014;23(2):153-8.
[8] Montenarh M. Protein kinase CK2 in DNA damage and repair. Transl. Cancer Res. 2016; 5(1): 49–63. 10.3978/j.issn.2218-676X.2016.01.09
[9] Götz C, Montenarh M. Protein kinase CK2 in the ER stress response. Adv Biol Chem. 2013; 3(3A): 1–5.
[10] Al Quobaili F, Montenarh M. CK2 and the regulation of the carbohydrate metabolism. Metabolism. 2012;61(11):1512-7.
[11] Götz C, Montenarh M. Protein kinase CK2 in development and differentiation. Biomed Rep. 2017;6(2):127-133.
[12] Chua MM, Ortega CE, Sheikh A, Lee M, Abdul-Rassoul H, Hartshorn KL, Dominguez I. CK2 in Cancer: Cellular and Biochemical Mechanisms and Potential Therapeutic Target. Pharmaceuticals (Basel). 2017;10(1). pii: E18.
[13] Rosenberger AF, Morrema TH, Gerritsen WH, van Haastert ES, Snkhchyan H, Hilhorst R, Rozemuller AJ, Scheltens P, van der Vies SM, Hoozemans JJ. Increased occurrence of protein kinase CK2 in astrocytes in Alzheimer's disease pathology. J Neuroinflammation. 2016;13:4.
[14] St-Denis NA, Litchfield DW. Protein kinase CK2 in health and disease: From birth to death: the role of protein kinase CK2 in the regulation of cell proliferation and survival. Cell Mol Life Sci. 2009;66(11-12):1817-29.
[15] Trembley JH, Chen Z, Unger G, Slaton J, Kren BT, Van Waes C, Ahmed K. Emergence of protein kinase CK2 as a key target in cancer therapy. Biofactors. 2010;36(3):187-95.
[16] Cozza G. The Development of CK2 Inhibitors: From Traditional Pharmacology to in Silico Rational Drug Design. Pharmaceuticals (Basel). 2017;10(1). pii: E26.
[17] Pierre F, Chua PC, O'Brien SE, Siddiqui-Jain A, Bourbon P, Haddach M, Michaux J, Nagasawa J, Schwaebe MK, Stefan E, Vialettes A, Whitten JP, Chen TK, Darjania L, Stansfield R, Bliesath J, Drygin D, Ho C, Omori M, Proffitt C, Streiner N, Rice WG, Ryckman DM, Anderes K. Pre-clinical characterization of CX-4945, a potent and selective small molecule inhibitor of CK2 for the treatment of cancer. Mol Cell Biochem. 2011;356(1-2):37-43.
[18] Golub AG, Yakovenko OY, Bdzhola VG, Sapelkin VM, Zien P, Yarmoluk SM. Evaluation of 3-carboxy-4(1H)-quinolones as inhibitors of human protein kinase CK2. J Med Chem. 2006;49(22):6443-50.
[19] Golub AG, Yakovenko OY, Prykhod'ko AO, Lukashov SS, Bdzhola VG, Yarmoluk SM. Evaluation of 4,5,6,7-tetrahalogeno-1H-isoindole-1,3(2H)-diones as inhibitors of human protein kinase CK2. Biochim Biophys Acta. 2008;1784(1):143-9.
[20] Golub AG, Bdzhola VG, Kyshenia YV, Sapelkin VM, Prykhod'ko AO, Kukharenko OP, Ostrynska OV, Yarmoluk SM. Structure-based discovery of novel flavonol inhibitors of human protein kinase CK2. Mol Cell Biochem. 2011;356(1-2):107-15.
[21] Golub AG, Bdzhola VG, Ostrynska OV, Kyshenia IV, Sapelkin VM, Prykhod'ko AO, Kukharenko OP, Yarmoluk SM. Discovery and characterization of synthetic 4'-hydroxyflavones-New CK2 inhibitors from flavone family. Bioorg Med Chem. 2013;21(21):6681-9.
[22] Golub AG, Bdzhola VG, Briukhovetska NV, Balanda AO, Kukharenko OP, Kotey IM, Ostrynska OV, Yarmoluk SM. Synthesis and biological evaluation of substituted (thieno[2,3-d]pyrimidin-4-ylthio)carboxylic acids as inhibitors of human protein kinase CK2. Eur J Med Chem. 2011;46(3):870-6.
[23] Ostrynska OV, Balanda AO, Bdzhola VG, Golub AG, Kotey IM, Kukharenko OP, Gryshchenko AA, Briukhovetska NV, Yarmoluk SM. Design and synthesis of novel protein kinase CK2 inhibitors on the base of 4-aminothieno[2,3-d]pyrimidines. Eur J Med Chem. 2016;115:148-60.
[24] Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785-91.
[25] Pedretti A, Villa L, Vistoli G. VEGA--an open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. J Comput Aided Mol Des. 2004;18(3):167-73.
[26] Syniugin AR, Ostrynska OV, Chekanov MO, Volynets GP, Starosyla SA, Bdzhola VG, Yarmoluk SM. Design, synthesis and evaluation of 3-quinoline carboxylic acids as new inhibitors of protein kinase CK2. J Enzyme Inhib Med Chem. 2016;31(sup4):160-169.
[27] Ferguson AD, Sheth PR, Basso AD, Paliwal S, Gray K, Fischmann TO, Le HV. Structural basis of CX-4945 binding to human protein kinase CK2. FEBS Lett. 2011;585(1):104-10.
[28] Starosyla SA, Volynets GP, Protopopov MV, Bdzhola VG, Yarmoluk SM. The development of algorithm for pharmacophore model optimization and rescoring of pharmacophore screening results. Ukr Bioorg Acta. 2016; 14(1):24–34.
[29] Sterling T, Becker DJ, Savarese D, Dorband JE, Ranawake UA, Packer CV. BEOWULF: A parallel workstation for scientific computation. Proceedings of the 24th International Conference on Parallel Processing. Oconomowoc. WI. 1995; 11–14.
[30] Hastie C, McLauchlan H, Cohen P. Assay of protein kinases using radiolabeled ATP: a protocol. Nat. Protoc. 2006; 1(2): 968–971.