Biopolym. Cell. 2015; 31(2):83-96.
Different types of biotechnological wound coverages created with the application of alive human cells
1Papuga A. Ye., 1Lukash L. L.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680


Currently, the development and the implementation of the new biotechnological wound coverings (skin equivalents) designed for temporal or permanent replacement of damaged or destroyed areas of human skin remains extremely actual relevant in clinical practice. Skin equivalents or equivalents of individual skin layers which include alive cells of different types take a special place among the artificial wound coverings. They mostly contain two basic types of cells – fibroblasts and keratinocytes (together or separately). Such bioconstructions are usually served as temporary coverings, which supply the damaged skin by biologically active substances and stimulate the regeneration of the patient's own tissues. In this review we consider as commercially available wound coverings and those which are still studied in the laboratories. Until now ideal substitutes of natural skin have not yet created, so the efforts of many researchers are focusing on the solution of this problem.
Keywords: artificial skin, skin equivalents or substitutes, wound dermal coverages, tissue engineering, cell, wound


[1] Pruitt BA Jr, Levine NS. Characteristics and uses of biologic dressings and skin substitutes. Arch Surg. 1984;119(3):312-22.
[2] Lacroix M, Bovy T, Nusgens BV, Lapi?re CM. Keratinocytes modulate the biosynthetic phenotype of dermal fibroblasts at a pretranslational level in a human skin equivalent. Arch Dermatol Res. 1995;287(7):659-64.
[3] Archambault M, Yaar M, Gilchrest BA. Keratinocytes and fibroblasts in a human skin equivalent model enhance melanocyte survival and melanin synthesis after ultraviolet irradiation. J Invest Dermatol. 1995;104(5):859-67.
[4] Eaglstein WH, Falanga V. Tissue engineering for skin: an update. J Am Acad Dermatol. 1998;39(6):1007-10.
[5] Ehrenreich M, Ruszczak Z. Update on tissue-engineered biological dressings. Tissue Eng. 2006;12(9):2407-24.
[6] Still J, Glat P, Silverstein P, Griswold J, Mozingo D. The use of a collagen sponge/living cell composite material to treat donor sites in burn patients. Burns. 2003;29(8):837-41.
[7] Hebda PA, Dohar JE. Transplanted fetal fibroblasts: survival and distribution over time in normal adult dermis compared with autogenic, allogenic, and xenogenic adult fibroblasts. Otolaryngol Head Neck Surg. 1999;121(3):245-51.
[8] Sandulache VC, Zhou Z, Sherman A, Dohar JE, Hebda PA. Impact of transplanted fibroblasts on rabbit skin wounds. Arch Otolaryngol Head Neck Surg. 2003;129(3):345-50.
[9] Clark RA, Ghosh K, Tonnesen MG. Tissue engineering for cutaneous wounds. J Invest Dermatol. 2007;127(5):1018-29.
[10] Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell. 1975;6(3):331-43.
[11] Gallico GG 3rd, O'Connor NE, Compton CC, Kehinde O, Green H. Permanent coverage of large burn wounds with autologous cultured human epithelium. N Engl J Med. 1984;311(7):448-51.
[12] Carsin H, Ainaud P, Le Bever H, Rives J, Lakhel A, Stephanazzi J, Lambert F, Perrot J. Cultured epithelial autografts in extensive burn coverage of severely traumatized patients: a five year single-center experience with 30 patients. Burns. 2000;26(4):379-87.
[13] Atiyeh BS, Costagliola M. Cultured epithelial autograft (CEA) in burn treatment: three decades later. Burns. 2007;33(4):405-13.
[14] Chester DL, Balderson DS, Papini RP. A review of keratinocyte delivery to the wound bed. J Burn Care Rehabil. 2004;25(3):266-75.
[15] Williamson JS, Snelling CF, Clugston P, Macdonald IB, Germann E. Cultured epithelial autograft: five years of clinical experience with twenty-eight patients. J Trauma. 1995;39(2):309-19.
[16] Hernon CA, Dawson RA, Freedlander E, Short R, Haddow DB, Brotherston M, MacNeil S. Clinical experience using cultured epithelial autografts leads to an alternative methodology for transferring skin cells from the laboratory to the patient. Regen Med. 2006;1(6):809-21.
[17] Compton CC, Gill JM, Bradford DA, Regauer S, Gallico GG, O'Connor NE. Skin regenerated from cultured epithelial autografts on full-thickness burn wounds from 6 days to 5 years after grafting. A light, electron microscopic and immunohistochemical study. Lab Invest. 1989;60(5):600-12.
[18] Ronfard V, Rives JM, Neveux Y, Carsin H, Barrandon Y. Long-term regeneration of human epidermis on third degree burns transplanted with autologous cultured epithelium grown on a fibrin matrix. Transplantation. 2000;70(11):1588-98.
[19] Wood FM, Kolybaba ML, Allen P. The use of cultured epithelial autograft in the treatment of major burn injuries: a critical review of the literature. Burns. 2006;32(4):395-401.
[20] Wood FM, Kolybaba ML, Allen P. The use of cultured epithelial autograft in the treatment of major burn wounds: eleven years of clinical experience. Burns. 2006;32(5):538-44.
[21] Vacher D. [Autologous epidermal sheets production for skin cellular therapy]. Ann Pharm Fr. 2003;61(3):203-6.
[22] Tausche AK, Skaria M, B?hlen L, Liebold K, Hafner J, Friedlein H, Meurer M, Goedkoop RJ, Wollina U, Salomon D, Hunziker T. An autologous epidermal equivalent tissue-engineered from follicular outer root sheath keratinocytes is as effective as split-thickness skin autograft in recalcitrant vascular leg ulcers. Wound Repair Regen. 2003;11(4):248-52.
[23] Horch RE, Kopp J, Kneser U, Beier J, Bach AD. Tissue engineering of cultured skin substitutes. J Cell Mol Med. 2005;9(3):592-608.
[24] Moustafa M, Simpson C, Glover M, Dawson RA, Tesfaye S, Creagh FM, Haddow D, Short R, Heller S, MacNeil S. A new autologous keratinocyte dressing treatment for non-healing diabetic neuropathic foot ulcers. Diabet Med. 2004;21(7):786-9.
[25] Ramos-e-Silva M, Ribeiro de Castro MC. New dressings, including tissue-engineered living skin. Clin Dermatol. 2002;20(6):715-23.
[26] Grant I, Warwick K, Marshall J, Green C, Martin R. The co-application of sprayed cultured autologous keratinocytes and autologous fibrin sealant in a porcine wound model. Br J Plast Surg. 2002;55(3):219-27.
[27] Navarro FA, Stoner ML, Park CS, Huertas JC, Lee HB, Wood FM, Orgill DP. Sprayed keratinocyte suspensions accelerate epidermal coverage in a porcine microwound model. J Burn Care Rehabil. 2000;21(6):513-8.
[28] Zhu N, Warner RM, Simpson C, Glover M, Hernon CA, Kelly J, Fraser S, Brotherston TM, Ralston DR, MacNeil S. Treatment of burns and chronic wounds using a new cell transfer dressing for delivery of autologous keratinocytes. Eur J Plast Surg. 2005;28(5):319–30
[29] Moustafa M, Bullock AJ, Creagh FM, Heller S, Jeffcoate W, Game F, Amery C, Tesfaye S, Ince Z, Haddow DB, MacNeil S. Randomized, controlled, single-blind study on use of autologous keratinocytes on a transfer dressing to treat nonhealing diabetic ulcers. Regen Med. 2007;2(6):887-902.
[30] Lam PK, Chan ES, To EW, Lau CH, Yen SC, King WW. Development and evaluation of a new composite Laserskin graft. J Trauma. 1999;47(5):918-22.
[31] Myers SR, Partha VN, Soranzo C, Price RD, Navsaria HA. Hyalomatrix: a temporary epidermal barrier, hyaluronan delivery, and neodermis induction system for keratinocyte stem cell therapy. Tissue Eng. 2007;13(11):2733-41.
[32] Price RD, Das-Gupta V, Leigh IM, Navsaria HA. A comparison of tissue-engineered hyaluronic acid dermal matrices in a human wound model. Tissue Eng. 2006;12(10):2985-95.
[33] Johnsen S, Ermuth T, Tanczos E, Bannasch H, Horch RE, Zschocke I, Peschen M, Sch?pf E, Vanscheidt W, Augustin M. Treatment of therapy-refractive ulcera cruris of various origins with autologous keratinocytes in fibrin sealant. Vasa. 2005;34(1):25-9.
[34] Vanscheidt W, Ukat A, Horak V, Br?ning H, Hunyadi J, Pavlicek R, Emter M, Hartmann A, Bende J, Zwingers T, Ermuth T, Eberhardt R. Treatment of recalcitrant venous leg ulcers with autologous keratinocytes in fibrin sealant: a multinational randomized controlled clinical trial. Wound Repair Regen. 2007;15(3):308-15.
[35] Kim PJ, Dybowski KS, Steinberg JS. A closer look at bioengineered alternative tissues. Podiatry Today. 2006;19(7).
[36] Stark HJ, Willhauck MJ, Mirancea N, Boehnke K, Nord I, Breitkreutz D, Pavesio A, Boukamp P, Fusenig NE. Authentic fibroblast matrix in dermal equivalents normalises epidermal histogenesis and dermoepidermal junction in organotypic co-culture. Eur J Cell Biol. 2004;83(11-12):631-45.
[37] Stark HJ, Boehnke K, Mirancea N, Willhauck MJ, Pavesio A, Fusenig NE, Boukamp P. Epidermal homeostasis in long-term scaffold-enforced skin equivalents. J Investig Dermatol Symp Proc. 2006;11(1):93-105.
[38] Demling RH. Use of Biobrane in management of scalds. J Burn Care Rehabil. 1995;16(3 Pt 1):329-30.
[39] Barret JP, Dziewulski P, Ramzy PI, Wolf SE, Desai MH, Herndon DN. Biobrane versus 1% silver sulfadiazine in second-degree pediatric burns. Plast Reconstr Surg. 2000;105(1):62-5.
[40] Pape SA, Byrne PO. Safety and efficacy of TransCyte for the treatment of partial-thickness burns. J Burn Care Rehabil. 2000;21(4):390.
[41] Marston WA, Hanft J, Norwood P, Pollak R; Dermagraft Diabetic Foot Ulcer Study Group. The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial. Diabetes Care. 2003;26(6):1701-5.
[42] Omar AA, Mavor AI, Jones AM, Homer-Vanniasinkam S. Treatment of venous leg ulcers with Dermagraft. Eur J Vasc Endovasc Surg. 2004;27(6):666-72.
[43] Caravaggi C, De Giglio R, Pritelli C, Sommaria M, Dalla Noce S, Faglia E, Mantero M, Clerici G, Fratino P, Dalla Paola L, Mariani G, Mingardi R, Morabito A. HYAFF 11-based autologous dermal and epidermal grafts in the treatment of noninfected diabetic plantar and dorsal foot ulcers: a prospective, multicenter, controlled, randomized clinical trial. Diabetes Care. 2003;26(10):2853-9.
[44] Xiao YL, Riesle J, Van Blitterswijk CA. Static and dynamic fibroblast seeding and cultivation in porous PEO/PBT scaffolds. J Mater Sci Mater Med. 1999;10(12):773-7.
[45] El-Ghalbzouri A, Lamme EN, van Blitterswijk C, Koopman J, Ponec M. The use of PEGT/PBT as a dermal scaffold for skin tissue engineering. Biomaterials. 2004;25(15):2987-96.
[46] Uccioli L; TissueTech Autograph System Italian Study Group. A clinical investigation on the characteristics and outcomes of treating chronic lower extremity wounds using the tissuetech autograft system. Int J Low Extrem Wounds. 2003;2(3):140-51.
[47] Waymack P, Duff RG, Sabolinski M. The effect of a tissue engineered bilayered living skin analog, over meshed split-thickness autografts on the healing of excised burn wounds. The Apligraf Burn Study Group. Burns. 2000;26(7):609-19.
[48] Hayes DW Jr, Webb GE, Mandracchia VJ, John KJ. Full-thickness burn of the foot: successful treatment with Apligraf. A case report. Clin Podiatr Med Surg. 2001;18(1):179-88.
[49] Meier S, Hay ED. Control of corneal differentiation by extracellular materials. Collagen as a promoter and stabilizer of epithelial stroma production. Dev Biol. 1974;38(2):249-70.
[50] Gey GO, Svotelis M, Foard M, Bang FB. Long-term growth of chicken fibroblasts on a collagen substrate. Exp Cell Res. 1974;84(1):63-71.
[51] Neumann PM, Zur B, Ehrenreich Y. Gelatin-based sprayable foam as a skin substitute. J Biomed Mater Res. 1981;15(1):9-18.
[52] Lee SB, Kim YH, Chong MS, Hong SH, Lee YM. Study of gelatin-containing artificial skin V: fabrication of gelatin scaffolds using a salt-leaching method. Biomaterials. 2005;26(14):1961-8.
[53] Zhang YZ, Venugopal J, Huang Z.-M, Lim CT, Ramakrishna S. Crosslinking of the electrospun gelatin nanofibers. Polymer. 2006; 47(8): 2911–7.
[54] Tomihata K, Burczak K, Shiraki K, Ikada Y. Cross-Linking and Biodegradation of Native and Denatured Collagen In: Polymers of biological and biomedical importance. Eds: Shalaby SW, Ikada Y, Langer RS, Williams J, American Chemical Society Symposium Series. Washington, DC: American Chemical Society, 1994. 540: 275–86.
[55] Rose PI. Gelatin. In: Encyclopedia of polymer science and engineering Eds: Mark HF, Bikales NM, Overberger CG, Menges G, Kroschwitz JI. New York: Wiley; 1987;7, 2nd ed. 488–513.
[56] Lee SB, Jeon HW, Lee YW, Lee YM, Song KW, Park MH, Nam YS, Ahn HC. Bio-artificial skin composed of gelatin and (1-->3), (1-->6)-beta-glucan. Biomaterials. 2003;24(14):2503-11.
[57] Bohn JA, BeMiller JN. (1-3)-?-D-Glucans as biological response modifiers: a review of structure–functional activity relationships. Carbohydr Polym. 1995; 28(1): 3–14.
[58] Powell HM, Boyce ST. Fiber density of electrospun gelatin scaffolds regulates morphogenesis of dermal-epidermal skin substitutes. J Biomed Mater Res A. 2008;84(4):1078-86.
[59] Park JS. Electrospinning and its applications. Adv Nat Sci: Nanosci Nanotechnol. 2010;1(4):043002.
[60] Huang S, Lu G, Wu Y, Jirigala E, Xu Y, Ma K, Fu X. Mesenchymal stem cells delivered in a microsphere-based engineered skin contribute to cutaneous wound healing and sweat gland repair. J Dermatol Sci. 2012;66(1):29-36.
[61] Quan R, Zheng X, Xu S, Zhang L, Yang D. Gelatin-chondroitin-6-sulfate-hyaluronic acid scaffold seeded with vascular endothelial growth factor 165 modified hair follicle stem cells as a three-dimensional skin substitute. Stem Cell Res Ther. 2014;5(5):118.
[62] Shevchenko RV, Eeman M, Rowshanravan B, Allan IU, Savina IN, Illsley M, Salmon M, James SL, Mikhalovsky SV, James SE. The in vitro characterization of a gelatin scaffold, prepared by cryogelation and assessed in vivo as a dermal replacement in wound repair. Acta Biomater. 2014;10(7):3156-66.
[63] George J, Onodera J, Miyata T. Biodegradable honeycomb collagen scaffold for dermal tissue engineering. J Biomed Mater Res A. 2008;87(4):1103-11.
[64] Kinsner A, Lesiak-Cyganowska E, Sladowski D. In vitro reconstruction of full thickness human skin on a composite collagen material. Cell Tissue Bank. 2001;2(3):165-71.
[65] Ahn S, Yoon H, Kim G, Kim Y, Lee S, Chun W. Designed three-dimensional collagen scaffolds for skin tissue regeneration. Tissue Eng Part C Methods. 2010;16(5):813-20.
[66] El Ghalbzouri A, Commandeur S, Rietveld MH, Mulder AA, Willemze R. Replacement of animal-derived collagen matrix by human fibroblast-derived dermal matrix for human skin equivalent products. Biomaterials. 2009;30(1):71-8.
[67] Hu K, Shi H, Zhu J, Deng D, Zhou G, Zhang W, Cao Y, Liu W. Compressed collagen gel as the scaffold for skin engineering. Biomed Microdevices. 2010;12(4):627-35.
[68] Helary C, Zarka M, Giraud-Guille MM. Fibroblasts within concentrated collagen hydrogels favour chronic skin wound healing. J Tissue Eng Regen Med. 2012;6(3):225-37.
[69] Powell HM, Boyce ST. Wound closure with EDC cross-linked cultured skin substitutes grafted to athymic mice. Biomaterials. 2007;28(6):1084-92.
[70] Powell HM, Supp DM, Boyce ST. Influence of electrospun collagen on wound contraction of engineered skin substitutes. Biomaterials. 2008;29(7):834-43.
[71] Kempf M, Miyamura Y, Liu PY, Chen AC, Nakamura H, Shimizu H, Tabata Y, Kimble RM, McMillan JR. A denatured collagen microfiber scaffold seeded with human fibroblasts and keratinocytes for skin grafting. Biomaterials. 2011;32(21):4782-92.
[72] Dai NT, Williamson MR, Khammo N, Adams EF, Coombes AG. Composite cell support membranes based on collagen and polycaprolactone for tissue engineering of skin. Biomaterials. 2004;25(18):4263-71.
[73] Dai NT, Yeh MK, Liu DD, Adams EF, Chiang CH, Yen CY, Shih CM, Sytwu HK, Chen TM, Wang HJ, Williamson MR, Coombes AG. A co-cultured skin model based on cell support membranes. Biochem Biophys Res Commun. 2005;329(3):905-8.
[74] Dai NT, Yeh MK, Chiang CH, Chen KC, Liu TH, Feng AC, Chao LL, Shih CM, Sytwu HK, Chen SL, Chen TM, Adams EF. Human single-donor composite skin substitutes based on collagen and polycaprolactone copolymer. Biochem Biophys Res Commun. 2009;386(1):21-5.
[75] Ng KW, Hutmacher DW, Schantz JT, Ng CS, Too HP, Lim TC, Phan TT, Teoh SH. Evaluation of ultra-thin poly(epsilon-caprolactone) films for tissue-engineered skin. Tissue Eng. 2001;7(4):441-55.
[76] Pitt CG, Chasalow FI, Hibionada YM, Kilmas DM, Schindler A. Aliphatic polyesters. 1. The degradation of poly(?-caprolactone) in vivo. J Appl Polym Sci. 1981; 26(11): 3779–87.
[77] Venugopal J, Ramakrishna S. Biocompatible nanofiber matrices for the engineering of a dermal substitute for skin regeneration. Tissue Eng. 2005;11(5-6):847-54.
[78] Ma K, Liao S, He L, Lu J, Ramakrishna S, Chan CK. Effects of nanofiber/stem cell composite on wound healing in acute full-thickness skin wounds. Tissue Eng Part A. 2011;17(9-10):1413-24.
[79] Ananta M, Brown RA, Mudera V. A rapid fabricated living dermal equivalent for skin tissue engineering: an in vivo evaluation in an acute wound model. Tissue Eng Part A. 2012;18(3-4):353-61.
[80] Liu P, Deng Z, Han S, Liu T, Wen N, Lu W, Geng X, Huang S, Jin Y. Tissue-engineered skin containing mesenchymal stem cells improves burn wounds. Artif Organs. 2008;32(12):925-31.
[81] Keck M, Haluza D, Lumenta DB, Burjak S, Eisenbock B, Kamolz LP, Frey M. Construction of a multi-layer skin substitute: Simultaneous cultivation of keratinocytes and preadipocytes on a dermal template. Burns. 2011;37(4):626-30.
[82] Chan RK, Zamora DO, Wrice NL, Baer DG, Renz EM, Christy RJ, Natesan S. Development of a vascularized skin construct using adipose-derived stem cells from debrided burned skin. Stem Cells Int. 2012;2012:841203.
[83] Itoh M, Umegaki-Arao N, Guo Z, Liu L, Higgins CA, Christiano AM. Generation of 3D skin equivalents fully reconstituted from human induced pluripotent stem cells (iPSCs). PLoS One. 2013;8(10):e77673.
[84] Pianigiani E, Andreassi A, Taddeucci P, Alessandrini C, Fimiani M, Andreassi L. A new model for studying differentiation and growth of epidermal cultures on hyaluronan-based carrier. Biomaterials. 1999;20(18):1689-94.
[85] Domard A, Rinaudo M. Preparation and characterization of fully deacetylated chitosan. Int J Biol Macromol. 1983;5(1):49–52.
[86] Tomihata K, Ikada Y. In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials. 1997;18(7):567-75.
[87] Mikhailov GM, Lebedeva MF, Pinaev GP, Iudintseva NM, Blinova MI, Panarin EF. New woven matrix made of resorbed natural chitin polysaccaride for culturing and transplantation of human skin cells. Cell Transplantation and Tissue Engineering. 2006; 4(6):56–61.
[88] Hilmi AB, Halim AS, Hassan A, Lim CK, Noorsal K, Zainol I. In vitro characterization of a chitosan skin regenerating template as a scaffold for cells cultivation. Springerplus. 2013;2(1):79.
[89] Ma L, Gao C, Mao Z, Zhou J, Shen J, Hu X, Han C. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials. 2003;24(26):4833-41.
[90] Tangsadthakun C, Kanokpanont S, Sanchavanakit N, Banaprasert T, Damrongsakkul S. Properties of collagen/chitosan scaffolds for skin tissue engineering. Journal of Metals, Materials and Minerals. 2006: 16(1):37–44.
[91] Bolshakov IN, Kirichenko AK, Eremeev AV, Vlasov AA. Application of a collagen-chitosan wound covering with cultured embryonic fibroblasts in the local treatment of deep burns. Fundamental research. 2008;(10):59.
[92] Eremeev AV, Svetlakov AV, Bolshakov IN, Vlasov AA, Arapova VA. Function of cultivating embryonic cells on collagen-chitosan matrix. Cell Transplantation and Tissue Engineering. 2009; IV(2):55–62.
[93] Mao J, Zhao L, De Yao K, Shang Q, Yang G, Cao Y. Study of novel chitosan-gelatin artificial skin in vitro. J Biomed Mater Res A. 2003;64(2):301-8.
[94] Han CM, Zhang LP, Sun JZ, Shi HF, Zhou J, Gao CY. Application of collagen-chitosan/fibrin glue asymmetric scaffolds in skin tissue engineering. J Zhejiang Univ Sci B. 2010;11(7):524-30.
[95] Ikemoto S, Mochizuki M, Yamada M, Takeda A, Uchinuma E, Yamashina S, Nomizu M, Kadoya Y. Laminin peptide-conjugated chitosan membrane: Application for keratinocyte delivery in wounded skin. J Biomed Mater Res A. 2006;79(3):716-22.
[96] Chen H, Huang J, Yu J, Liu S, Gu P. Electrospun chitosan-graft-poly (? -caprolactone)/poly (?-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering. Int J Biol Macromol. 2011;48(1):13-9.
[97] Shalumon KT, Anulekha KH, Chennazhi KP, Tamura H, Nair SV, Jayakumar R. Fabrication of chitosan/poly(caprolactone) nanofibrous scaffold for bone and skin tissue engineering. Int J Biol Macromol. 2011;48(4):571-6.
[98] Price RD, Berry MG, Navsaria HA. Hyaluronic acid: the scientific and clinical evidence. J Plast Reconstr Aesthet Surg. 2007;60(10):1110-9.
[99] Wang TW, Sun JS, Wu HC, Tsuang YH, Wang WH, Lin FH. The effect of gelatin-chondroitin sulfate-hyaluronic acid skin substitute on wound healing in SCID mice. Biomaterials. 2006;27(33):5689-97.
[100] Liu H, Mao J, Yao K, Yang G, Cui L, Cao Y. A study on a chitosan-gelatin-hyaluronic acid scaffold as artificial skin in vitro and its tissue engineering applications. J Biomater Sci Polym Ed. 2004;15(1):25-40.
[101] Liu H, Yin Y, Yao K. Construction of chitosan-gelatin-hyaluronic acid artificial skin in vitro. J Biomater Appl. 2007;21(4):413-30.
[102] Wang HM, Chou YT, Wen ZH, Wang CZ, Chen CH, Ho ML. Novel biodegradable porous scaffold applied to skin regeneration. PLoS One. 2013;8(6):e56330.
[103] Scuderi N, Onesti MG, Bistoni G, Ceccarelli S, Rotolo S, Angeloni A, Marchese C. The clinical application of autologous bioengineered skin based on a hyaluronic acid scaffold. Biomaterials. 2008;29(11):1620-9.
[104] Enrione J, Osorio F, Lopez D, Weinstein-Oppenheimer C, Fuentes MA, Ceriani R, Brown DI, Albornoz F, Sanchez E, Villalobos P, Somoza RA, Young ME, Acevedo CA. Characterization of a Gelatin/Chitosan/Hyaluronan scaffold-polymer. Electron J Biotechnol. 2010; 13(5).
[105] Kondo S, Kuroyanagi Y. Development of a wound dressing composed of hyaluronic acid and collagen sponge with epidermal growth factor. J Biomater Sci Polym Ed. 2012;23(5):629-43.
[106] Chandrasekaran AR, Venugopal J, Sundarrajan S, Ramakrishna S. Fabrication of a nanofibrous scaffold with improved bioactivity for culture of human dermal fibroblasts for skin regeneration. Biomed Mater. 2011;6(1):015001.
[107] Blackwood KA, McKean R, Canton I, Freeman CO, Franklin KL, Cole D, Brook I, Farthing P, Rimmer S, Haycock JW, Ryan AJ, MacNeil S. Development of biodegradable electrospun scaffolds for dermal replacement. Biomaterials. 2008;29(21):3091-104.
[108] Kumbar SG, Nukavarapu SP, James R, Nair LS, Laurencin CT. Electrospun poly(lactic acid-co-glycolic acid) scaffolds for skin tissue engineering. Biomaterials. 2008;29(30):4100-7.
[109] Mazlyzam AL, Aminuddin BS, Fuzina NH, Norhayati MM, Fauziah O, Isa MR, Saim L, Ruszymah BH. Reconstruction of living bilayer human skin equivalent utilizing human fibrin as a scaffold. Burns. 2007;33(3):355-63.
[110] Kim SS, Song CK, Shon SK, Lee KY, Kim CH, Lee MJ, Wang L. Effects of human amniotic membrane grafts combined with marrow mesenchymal stem cells on healing of full-thickness skin defects in rabbits. Cell Tissue Res. 2009;336(1):59-66.
[111] Yang L, Shirakata Y, Tokumaru S, Xiuju D, Tohyama M, Hanakawa Y, Hirakawa S, Sayama K, Hashimoto K. Living skin equivalents constructed using human amnions as a matrix. J Dermatol Sci. 2009;56(3):188-95.
[112] Castagnoli C, Fumagalli M, Alotto D, Cambieri I, Casarin S, Ostorero A, Casimiri R, Germano P, Pezzuto C, Stella M. Preparation and characterization of a novel skin substitute. J Biomed Biotechnol. 2010;2010. pii: 840363.
[113] Yeum CE, Park EY, Lee SB, Chun HJ, Chae GT. Quantification of MSCs involved in wound healing: use of SIS to transfer MSCs to wound site and quantification of MSCs involved in skin wound healing. J Tissue Eng Regen Med. 2013;7(4):279-91.
[114] Lukash LL, Iatsishina AP, Kushniruk VO, Pidpala OV. Reprogramming of adult somatic human cells in vitro. Factors of experimental evolution. Kyiv: Logos, 2011; 11: 493–8.
[115] Shablii VA., Kuchma MD, Kyryk VM, Onishchenko AN, Lukash LL, Lobitseva GS. Cryopreservation human placental tissue as source of hematopoietic and mesenchymal stem cells. Cell Transplantation and Tissue Engineering. 2012. VII(1):54–62.
[116] Shablii V, Kuchma M, Kyryk V, Onishchenko G, Areshkov P, Skrypnyk N, Lukash L, Lobyntseva G. Characteristics of placental multipotent mesenchymal stromal stem cells. Cell Transplantation and Tissue Engineering. 2013; VIII(4):55–61.
[117] Kosenko OO, Lukash LL, Samchenko UM, Ruban TA, Ulberg ZR, Lukash SI. Copolymeric hydrogel membranes for immobilization and cultivation of human stem cells. Biopolym Cell. 2006;22(2):143–8.
[118] Kosenko OO, Lukash LL, Samchenko YuM, Ruban TA, Lukash SI, Ulberg ZR, Galagan NP. Artificial skin equivalent based on copolymeric hydrogel membranes with immobilized human mesenchymal stem cells. Biopolym Cell. 2006;22(6):446–51.