Biopolym. Cell. 2014; 30(3):223-228.
Methods
Optimization of cell motility evaluation in scratch assay
- Institute of Molecular Biology and Genetics, NAS of Ukraine
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
Abstract
A scratch test is one of the most popular methods of classical cell migration assay in a monolayer culture. At the same time, the scratch assay has some disadvantages that can be easily corrected. Aim. Optimization the existent scratch assay on the base of detection of scratch wound surface area and the length of the field of observation which is more objective and less time consuming. Methods. Scratch assay. Results. The modification of scratch assay enables to perform measurement more accurately and rapidly. This approach is more simple and eliminates the main disadvantages of the classical method. Conclusions. The procedure of scratch wound width measurement calculated on the base of detection of cell free area and the length of the field of observation is more effective than the classical wound healing assay. It will be useful for the estimation of cell migration dynamics in monolayer culture for a wide range of live cell based experiments.
Keywords: valuation of cell migration activity, scratch assay
Full text: (PDF, in English)
References
[1]
Friedl P, Wolf K. Plasticity of cell migration: a multiscale tuning model. J Cell Biol. 2010;188(1):11-9.
[3]
Vanderlei B, Feng JJ, Edelstein-Keshet L. A computational model of cell polarization and motility coupling mechanics and biochemistry. Multiscale Model Simul. 2011;9(4):1420-1443.
[4]
Hulkower KI, Herber RL. Cell migration and invasion assays as tools for drug discovery. Pharmaceutics. 2011;3(1):107-24.
[5]
Kramer N, Walzl A, Unger C, Rosner M, Krupitza G, Hengstschl?ger M, Dolznig H. In vitro cell migration and invasion assays. Mutat Res. 2013;752(1):10-24.
[6]
Cell Migration Assays Trends 2012: Report. Cambridge, HTS tec Limited publ. 2012; 50 p.
[7]
Comley J. Cell Migration: probing cell movement with smarter tools. Drug Discovery World Winter 2012/13; 14:33–51.
[8]
Liang CC, Park AY, Guan JL. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007;2(2):329-33.
[9]
Rodriguez LG, Wu X, Guan JL. Wound-healing assay. Methods Mol Biol. 2005;294:23-9.
[10]
Yarrow JC, Perlman ZE, Westwood NJ, Mitchison TJ. A high-throughput cell migration assay using scratch wound healing, a comparison of image-based readout methods. BMC Biotechnol. 2004;4:21.
[11]
Vogt A. Advances in two-dimensional cell migration assay technologies. Eur Pharm Rev. 2010;5:26–29.
[12]
Kam Y, Guess C, Estrada L, Weidow B, Quaranta V. A novel circular invasion assay mimics in vivo invasive behavior of cancer cell lines and distinguishes single-cell motility in vitro. BMC Cancer. 2008;8:198.
[13]
Staton CA, Reed MW, Brown NJ. A critical analysis of current in vitro and in vivo angiogenesis assays. Int J Exp Pathol. 2009;90(3):195-221.
[14]
de Chaumont F, Dallongeville S, Chenouard N, Herv? N, Pop S, Provoost T, Meas-Yedid V, Pankajakshan P, Lecomte T, Le Montagner Y, Lagache T, Dufour A, Olivo-Marin JC. Icy: an open bioimage informatics platform for extended reproducible research. Nat Methods. 2012;9(7):690-6.
[15]
Filonenko VV. PI3K. mTOR. S6K signaling pathway – new players and new functional links. Biopolym Cell. 2013;29(3):207–14.
[16]
Liu L, Parent CA. Review series: TOR kinase complexes and cell migration. J Cell Biol. 2011;194(6):815-24.
[17]
Gillen JR, Zhao Y, Harris DA, Lapar DJ, Stone ML, Fernandez LG, Kron IL, Lau CL. Rapamycin blocks fibrocyte migration and attenuates bronchiolitis obliterans in a murine model. Ann Thorac Surg. 2013;95(5):1768-75.
[18]
Filonenko VV, Tytarenko R, Azatjan SK, Savinska LO, Gaydar YA, Gout IT, Usenko VS, Lyzogubov VV. Immunohistochemical analysis of S6K1 and S6K2 localization in human breast tumors. Exp Oncol. 2004;26(4):294-9.
[19]
Lyzogubov V, Khozhaenko Y, Usenko V, Antonjuk S, Ovcharenko G, Tikhonkova I, Filonenko V. Immunohistochemical analysis of Ki-67, PCNA and S6K1/2 expression in human breast cancer. Exp Oncol. 2005;27(2):141-4.
[20]
Lyzogubov VV, Lytvyn DI, Dudchenko TM, Lubchenko NV, Pogrybniy PV, Nespryadko SV, Vinnitska AB, Usenko VS, Gout IT, Filonenko VV. Immunohistochemical analysis of S6K1 and S6K2 expression in endometrial adenocarcinomas. Exp Oncol. 2004; 26(4):287–93.
[21]
Savinska LO, Lyzogubov VV, Usenko VS, Ovcharenko GV, Gorbenko ON, Rodnin MV, Vudmaska MI, Pogribniy PV, Kyyamova RG, Panasyuk GG, Nemazanyy IO, Malets MS, Palchevskyy SS, Gout IT, Filonenko VV. Immunohistochemical analysis of S6K1 and S6K2 expression in human breast tumors. Eksp Onkol. 2004;26(1):24-30.
[22]
Fenton TR, Gout IT. Functions and regulation of the 70kDa ribosomal S6 kinases. Int J Biochem Cell Biol. 2011;43(1):47-59.
[23]
Kirui JK, Xie Y, Wolff DW, Jiang H, Abel PW, Tu Y. Gbetagamma signaling promotes breast cancer cell migration and invasion. J Pharmacol Exp Ther. 2010;333(2):393-403.