Biopolym. Cell. 2014; 30(2):107-117.
Genomics, Transcriptomics and Proteomics
Low-density microarray analysis of TGFβ1-dependent
cell cycle regulation in human breast adenocarcinoma MCF7 cell line
- OncoRay - National Center for Radiation Research in Oncology
Medizinische Fakultat Carl Gustav Carus, Technische Universitat Dresden
Fetscherstr. 74, PF 41, 01307 Dresden - Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Solna
SE-17176, Stockholm, Sweden - Personalized Cancer Diagnostic
AB SE-75263, Uppsala, Sweden
Abstract
Transforming growth factor β1 (TGFβ1) is a growth regulator that has antiproliferative effects on a range of epithelial cells at the early stages and promoting tumorigenesis at the later stages of cancer progression. The molecular mechanisms of a duel role of TGFβ1 in tumor growth regulation remain poorly understood. Aim. To analyze the TGFβ1-dependent cell cycle regulation of tumorigenic breast epithelial cells. Methods. Our present study was designed to examine the regulatory effect of TGFβ1 on the expression of a panel of 96 genes which are known to be critically involved in cell cycle regulation. GEArray Q series Human Cell Cycle Gene Array was applied to profile the gene expression changes in MCF7 human breast adenocarcinoma cell line treated with TGFβ1. Results. The gene expression array data enabled us to reveal the molecular regulators that might connect TGFβ1 signaling to the promoting of the tumor growth, e. g. retinoblastoma protein (pRB1), check-point kinase 2 (Chk2), breast cancer 1, early onset (BRCA1), DNA damage checkpoint protein RAD9, cyclin-dependent kinase 2 (CDK2), cyclin D1 (CCND1). Conclusions. The uncovering of the key signaling modules involved in TGFβ1- dependent signaling might provide an insight into the mechanisms of TGFβ1-dependent tumor growth and can be beneficial for the development of novel therapeutic approaches.
Keywords: transforming growth factorβ 1, human breast adenocarcinoma, MCF7 cell line, cell cycle regulation, microarray
Full text: (PDF, in English)
References
[1]
Kloen P, Jennings CL, Gebhardt MC, Springfield DS, Mankin HJ. Expression of transforming growth factor-beta (TGF-beta) receptors, TGF-beta 1 and TGF-beta 2 production and autocrine growth control in osteosarcoma cells. Int J Cancer. 1994; 58 (3): 440–5.
[2]
Huang T, David L, Mendoza V, Yang Y, Villarreal M, De K, Sun L, Fang X, Lopez-Casillas F, Wrana JL, Hinck AP. TGF-b signalling is mediated by two autonomously functioning TbRI: TbRII pairs. EMBO J. 2011; 30(7):1263–76.
[3]
Moustakas A, Souchelnytskyi S, Heldin CH. Smad regulation in TGF-beta signal transduction. J Cell Sci. 2001; 114(Pt 24): 4359–69.
[4]
Wakefield LM, Piek E, Bottinger EP. TGF-beta signaling in mammary gland development and tumorigenesis. J Mammary Gland Biol Neoplasia. 2001; 6(1):67–82.
[5]
Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003; 425 (6958):577–84.
[6]
Souchelnytskyi S. Proteomics of TGF-beta signaling and its impact on breast cancer. Expert Rev Proteomics. 2005; 2(6): 925–35. 16307521
[7]
Iwahana H, Yakymovych I, Dubrovska A, Hellman U, Souchelnytskyi S. Glycoproteome profiling of transforming growth factor-beta (TGFbeta) signaling: nonglycosylated cell death-inducing DFF-like effector A inhibits TGFbeta1-dependent apoptosis. Proteomics. 2006; 6(23):6168–80.
[8]
Zakharchenko O, Cojoc M, Dubrovska A, Souchelnytskyi S. A role of TGFb1 dependent 14-3-3s phosphorylation at Ser69 and Ser74 in the regulation of gene transcription, stemness and radioresistance. PLoS One. 2013; 8(5):e65163.
[9]
Ota T, Fujii M, Sugizaki T, Ishii M, Miyazawa K, Aburatani H, Miyazono K. Targets of transcriptional regulation by two dis- tinct type I receptors for transforming growth factor-beta in human umbilical vein endothelial cells. J Cell Physiol. 2002; 193 (3):299–318.
[10]
Qureshi HY, Ricci G, Zafarullah M. Smad signaling pathway is a pivotal component of tissue inhibitor of metalloproteinases-3 regulation by transforming growth factor beta in human chondrocytes. Biochim Biophys Acta. 2008; 1783(9):1605–12.
[11]
Bachman KE, Park BH. Duel nature of TGF-beta signaling: tumor suppressor vs. tumor promoter. Curr Opin Oncol. 2005; 17 (1):49–54.
[12]
Yakymovych I, Ten Dijke P, Heldin CH, Souchelnytskyi S. Regulation of Smad signaling by protein kinase C. FASEB J. 2001; 15(3):553–5.
[13]
Dubrovska A, Kanamoto T, Lomnytska M, Heldin CH, Volodko N, Souchelnytskyi S. TGFbeta1/Smad3 counteracts BRCA1-dependent repair of DNA damage. Oncogene. 2005; 24(14): 2289–97.
[14]
Kanamoto T, Hellman U, Heldin CH, Souchelnytskyi S. Functional proteomics of transforming growth factor-beta1-stimulated Mv1Lu epithelial cells: Rad51 as a target of TGFbeta1-dependent regulation of DNA repair. EMBO J. 2002; 21(5): 1219–30.
[15]
Kirshner J, Jobling MF, Pajares MJ, Ravani SA, Glick AB, Lavin MJ, Koslov S, Shiloh Y, Barcellos-Hoff MH. Inhibition of transforming growth factor-beta1 signaling attenuates ataxia telangiectasia mutated activity in response to genotoxic stress. Cancer Res. 2006; 66(22):10861–9.
[16]
Wicks SJ, Grocott T, Haros K, Maillard M, ten Dijke P, Chantry A. Reversible ubiquitination regulates the Smad/TGF-beta signalling pathway. Biochem Soc Trans. 2006; 34(Pt 5):761–3.
[17]
Ohashi N, Yamamoto T, Uchida C, Togawa A, Fukasawa H, Fujigaki Y, Suzuki S, Kitagawa K, Hattori T, Oda T, Hayashi H, Hishida A, Kitagawa M. Transcriptional induction of Smurf2 ubiquitin ligase by TGF-beta. FEBS Lett. 2005; 579(12):2557–63.
[18]
Nakayama KI, Nakayama K. Regulation of the cell cycle by SCF-type ubiquitin ligases. Semin Cell Dev Biol. 2005; 16(3):323–33.
[19]
Stasyk T, Dubrovska A, Lomnytska M, Yakymovych I, Wernstedt C, Heldin CH, Hellman U, Souchelnytskyi S. Phosphoproteome profiling of transforming growth factor (TGF)-beta signaling: abrogation of TGFbeta1-dependent phosphorylation of transcription factor-II-I (TFII-I) enhances cooperation of TFII-I and Smad3 in transcription. Mol Biol Cell. 2005; 16(10):4765–80.
[20]
Chen CR, Kang Y, Siegel PM, Massague J. E2F4/5 and p107 as Smad cofactors linking the TGFbeta receptor to c-myc repression. Cell. 2002; 110(1):19–32
[21]
Frederick JP, Liberati NT, Waddell DS, Shi Y, Wang XF. Transforming growth factor beta-mediated transcriptional repression of c-myc is dependent on direct binding of Smad3 to a novel repressive Smad binding element. Mol Cell Biol. 2004; 24(6): 2546–59.
[23]
Johnson DG, Schneider-Broussard R. Role of E2F in cell cycle control and cancer. Front Biosci. 1998; 3:d447–8.
[24]
Zeng X, Yin F, Liu X, Xu J, Xu Y, Huang J, Nan Y, Qiu X. Upregulation of E2F transcription factor 3 is associated with poor prognosis in hepatocellular carcinoma. Oncol Rep. 2014; 31(3): 1139–46.
[25]
Lasham A, Samuel W, Cao H, Patel R, Mehta R, Stern JL, Reid G, Woolley AG, Miller LD, Black MA, Shelling AN, Print CG, Braithwaite AW. YB-1, the E2F pathway, and regulation of tumor cell growth. J Natl Cancer Inst. 2012; 104(2):133–46.
[26]
Rakha EA, Pinder SE, Paish EC, Robertson JF, Ellis IO. Expression of E2F-4 in invasive breast carcinomas is associated with poor prognosis. J Pathol. 2004; 203(3):754–61.
[27]
Molenaar JJ, Koster J, Ebus ME, van Sluis P, Westerhout EM, de Preter K, Gisselsson D, Ora I, Speleman F, Caron HN, Versteeg R. Copy number defects of G1-cell cycle genes in neuroblastoma are frequent and correlate with high expression of E2F target genes and a poor prognosis. Genes Chromosomes Cancer. 2012; 51(1):10–9.
[28]
Fang ZH, Han ZC. The transcription factor E2F: a crucial switch in the control of homeostasis and tumorigenesis. Histol Histopathol. 2006; 21(4):403–13.
[29]
Schwartz GK, Shah MA. Targeting the cell cycle: a new approach to cancer therapy. J Clin Oncol. 2005; 23(36):9408–21.
[30]
Golias CH, Charalabopoulos A, Charalabopoulos K. Cell proliferation and cell cycle control: a mini review. Int J Clin Pract. 2004; 58(12):1134–41.
[31]
Gramatzki D, Pantazis G, Schittenhelm J, Tabatabai G, Kohle C, Wick W, Schwarz M, Weller M, Tritschler I. Aryl hydrocarbon receptor inhibition downregulates the TGF-beta/Smad pathway in human glioblastoma cells. Oncogene. 2009; 28(28):2593–605.