Biopolym. Cell. 1987; 3(6):327-329.
Short Communications
The effect of redox potential of the medium on the catalytic activity of NAD-dependent hydrogenase
1Petrov R. R., 1Utkin I. B., 2Egorov A. M., 1Popov V. O.
  1. A. N. Bakh Institute of Biochemistry, Academy of Sciences of the USSR
    Moscow, USSR
  2. M. V. Lomonosov State University
    Moscow, USSR

Abstract

The effect of redox potential of the medium on the catalytic properties of soluble hydrogenase from hydrogen-oxidizing bacteria Alcaligenes eutrophus Zl was studied. Two transitions on the catalytic activity of the enzyme vs redox potential profiles are observed: transitions with Em~—300 mV and Em~—400 mV control NAD(H)-dependent activities of enzyme and hydrogen uptake reaction with methyl viologen, respectively. These redox transitions may be accounted for by the model of the intramolecular electron transport chain of hydrogenase. A possible physiological role of the redox regulation of the hydrogenase catalytic activity is discussed. It is assumed that hydrogenase is regulated in vivo by the pool of nicotinamide adenine dinucleotides.

References

[1] Zorin NA, Serebryakova LT, Gogotov IN. Effect of the redox potential on the activity of purple bacteria hydrogenases. Biokhimiia. 1984; 49(8):1316-9.
[2] Fernandez VM, Aguirre R, Hatchikian EC. Reductive activation and redox properties of hydrogenase from Desulfovibrio gigas. Biochim Biophys Acta. 1984; 790(1):1-7.
[3] Lissolo T, Pulvin S, Thomas D. Reactivation of the hydrogenase from Desulfovibrio gigas by hydrogen. Influence of redox potential. J Biol Chem. 1984;259(19):11725-9.
[4] Grande HJ, van Berkel-Arts A, Bregh J, van Dijk K, Veeger C. Kinetic properties of hydrogenase isolated from Desulfovibrio vulgaris (Hildenborough). Eur J Biochem. 1983;131(1):81-8.
[5] van Dijk C, Veeger C. The effects of pH and redox potential on the hydrogen production activity of the hydrogenase from Megasphaera elsdenii. Eur J Biochem. 1981;114(2):209-19.
[6] Fernandez VM, Munilla R, Ballesteros A. Influence of the redox potential on the activity of Clostridium pasteurianum and Chromatium hydrogenases. Arch Biochem Biophys. 1982;215(1):129-35.
[7] Pinchukova EE, Varfolomeev SD, Kondrat'eva EN. Isolation, purification and study of the stability of the soluble hydrogenase of Alcaligenes eutrophus Z-1. Biokhimiia. 1979;44(4):605-15.
[8] Schneider K, Schlegel HG. Purification and properties of soluble hydrogenase from Alcaligenes eutrophus H 16. Biochim Biophys Acta. 1976;452(1):66-80.
[9] Popov VO, Utkin IB, Gazaryan IG, Ovchinnikov AN, Egorov AM, Berezin IV. Inactivation of the hydrogenase from the hydrogen-oxidizing bacterium Alcaligenes eutrophus Z-1 under the action of urea and limited proteolysis. Biochim Biophys Acta. 1984; 789(2):210-15.
[10] Schneider K, Schlegel HG, Jochim K. Effect of nickel on activity and subunit composition of purified hydrogenase from Nocardia opaca 1 b. Eur J Biochem. 1984;138(3):533-41.
[11] Popov VO, Berezin IV, Zaks AM, Gazaryan IG, Utkin IB, Egorov AM. Hydrogenase from the hydrogen-oxidizing bacterium Alcaligenes eutrophus Z I. Biochim Biophys Acta. 1983; 744(3):298-303.
[12] Hornhardt S, Schneider K, Schlegel HG. Characterization of a native subunit of the NAD-linked hydrogenase isolated from a mutant of Alcaligenes eutrophus H16. Biochimie. 1986;68(1):15-24.
[13] Gazaryan IG. The structure of NAD-dependent hydrogenase of Hydrogen oxidizing bacteria Alcaligenes eutrophus Zl and Kinetic characteristics of its action : Author. dis. ... cand. chem. sciences. M., 1984; 27 p.
[14] Schneider K, Cammack R, Schlegel HG, Hall DO. The iron-sulphur centres of soluble hydrogenase from Alcaligenes eutrophus. Biochim Biophys Acta. 1979;578(2):445-61.