Biopolym. Cell. 1987; 3(5):251-257.
Cell Biology
Electron-microscopic study of the structure of rosette-like nucleoproteid complexes isolated from Escherichia coli cells
1Kiseleva E. V., 1Likhoshvay E. V., 1Khrisiolyubova N. B., 1Vorobyova N. V., 1Serdyukova H. A., 1Romashchenko A. G.
  1. Institute of Cytology and Genetics, Siberian Branch of the Academy of Sciences of the USSR
    Novosibirsk, USSR

Abstract

The structure of rosette-like DNA complexes is described in the material isolated by means of a mild technique from the bacterial cell lysate. DNAse treatment is shown to lead to ruptures in the rosettes' loops. Phospholipase and RNAse destroy the bonds between loops in the central region of rosettes, due to which the contour length of the loops increases considerably. Pronase induces a diminution of the diameter of central electron-dense globules, that leads to a gradual unfolding of roseltes to form the circular and loop-like structures. This evidences for participation of ribonucleoprotcins and, possibly, lipids in the formation of rosette-like DNA packing which may be connected with the functional organization of the prokaryotic genome.

References

[1] Wang JC. DNA supercoiling and its effects on the structure of DNA. J Cell Sci Suppl. 1984;1:21-9.
[2] Marilley M., Buongforno-Nardelli M. Relationship between the organization of DNA loop domain and replicons in the eucaryotic genom. Protein involved DNA replication. New York; London : Plenum press, 1984: 163-168.
[3] Kharchenko EP. Prokaryotic nucleotide and eukaryotic chromosome levels of organization. Zhurnal evol biokhimii i fiziologii. 1980; 16(1):8-18.
[4] Romashchenko AG, Vorob'eva NV, Grabkina OA, Kiseleva EV, Serdiukova NA. Extrachromosomal elements of Escherichia coli in the fraction containing nucleoprotein complexes of reverse transcriptase with an endogenous template. Dokl Akad Nauk SSSR. 1984;277(5):1264-6.
[5] Caro LG. The molecular weight of lambda DNA. Virology. 1965;25:226-36.
[6] Brown DT, Westphal M, Burlingham BT, Winterhoff U, Doerfler W. Structure and composition of the adenovirus type 2 core. J Virol. 1975;16(2):366-87.
[7] Van Tuyle GC, McPherson ML. A compact form of rat liver mitochondrial DNA stabilized by bound proteins. J Biol Chem. 1979;254(13):6044-53.
[8] Zatsepina OV, Poliakov VIu, Chentsov IuS. Electron microscopic study of the chromonema and chromomeres in mitotic and interphase chromosomes. Tsitologiia. 1983;25(2):123-9.
[9] Worcel A, Burgi E. On the structure of the folded chromosome of Escherichia coli. J Mol Biol. 1972;71(2):127-47.
[10] Kantor JA, Lee YH, Chirikjian JG, Feller WF. DNA polymerase with characteristics of reverse transcriptase purified from human milk. Science. 1979;204(4392):511-3.
[11] Clewell DB, Helinski DR. Supercoiled circular DNA-protein complex in Escherichia coli: purification and induced conversion to an opern circular DNA form. Proc Natl Acad Sci U S A. 1969;62(4):1159-66.
[12] Pettijohn DE, Hecht R. RNA molecules bound to the folded bacterial genome stabilize DNA folds and segregate domains of supercoiling. Cold Spring Harb Symp Quant Biol. 1974;38:31-41.
[13] Kleinschmidt AK. Monolayer techniques in electron microscopy of nucleic acid molecules. Methods Enzymol. 1968;12 B: 361-377.
[14] Perebitiuk AN, Boronin AM, Skriabin GK. Extrachromosomal DNA in the MRE 600 strain of Escherichia coli. Dokl Akad Nauk SSSR. 1978;240(4):990-2.
[15] Kiseleva EV, Likhoshvai EV, Serdiukova NA, Khristoliubova NB. Electron microscopy analysis of the levels of structural organization of the Escherichia coli chromosome. Dokl Akad Nauk SSSR. 1986;289(5):1235-7.
[16] Leon P, Macaya G. Properties of DNA rosettes and their relevance to chromosome structure. Chromosoma. 1983;88(4):307-14. http://dx.doi.org/10.1007/bf00292908
[17] Sloof P, Maagdelijn A, Boswinkel E. Folding of prokaryotic DNA. Isolation and characterization of nucleoids from Bacillus licheniformis. J Mol Biol. 1983;163(2):277-97.
[18] Materman EC, Van Gool AP. Compact Escherichia coli nucleoids in a highly supercoiled conformation. J Bacteriol. 1978;135(2):703-6.
[19] Broyles SS, Pettijohn DE. Interaction of the Escherichia coli HU protein with DNA. Evidence for formation of nucleosome-like structures with altered DNA helical pitch. J Mol Biol. 1986;187(1):47-60.
[20] Prusov AN, Polyakov VYu, Zatsepina OV, Chentsov YuS, Fais D. Rosette-like structures from nuclei with condensed (chromomeric) chromatin but not from nuclei with diffuse (nucleomeric or nucleosomic) chromatin. Cell Biol Int Rep. 1983;7(10):849-58.
[21] Comings DE, Okada TA. Nuclear proteins. III. The fibrillar nature of the nuclear matrix. Exp Cell Res. 1976;103(2):341-60.
[22] Gaziev AI, Fomenko LA, Zakrzhevskaia DT, Sigaeva VA. Proteins firmly bound to DNA in the E. coli nucleoid. Biokhimiia. 1985;50(5):814-9.
[23] Mazin AL. Classification of low-molecular-weight RNA of mammals. Mol Biol (Mosk). 1983;17(4):784-92.
[24] Hamkalo BA, Farnham PJ, Johnston R, Schimke RT. Ultrastructural features of minute chromosomes in a methotrexate-resistant mouse 3T3 cell line. Proc Natl Acad Sci U S A. 1985;82(4):1126-30.
[25] Sjastad K, Fadnes P, Kruger PG, Lossius I, Kleppe K. Isolation, properties and nucleolytic degradation of chromatin from Escherichia coli. J Gen Microbiol. 1982;128(12):3037-50.
[26] Horz W, Altenburger W. Sequence specific cleavage of DNA by micrococcal nuclease. Nucleic Acids Res. 1981;9(12):2643-58.
[27] Widom J Molecular biology: DNA bending and kinking. Nature. 1984; 309(5966):312-3.