Biopolym. Cell. 2013; 29(6):521-526.
Bioinformatics
Evaluation criteria of rat hepatocytes transcriptome analysis under the influence of interferon alpha by DNA microarray
1Kuklin A. V., 1Tokovenko B. T., 1Obolenska M. Yu.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

The changes induced in transcriptome of rat hepatocytes treated with interferon alpha (IFN) during three and six hours were analyzed by DNA microarray. Aim. To conduct a stepwise analysis of the results of microarray experiment and to determine whether they meet/fail to the conventional requirements. Methods. The files obtained after scanning microarrays were subjected to the analysis in statistical environment R by Bioconductor’s packages «affy», «simpleaffy», «affyPLM» and BRB Array Tools software for paired T-test. Results. All microarrays had quality metrics lying within recommended ranges, passed quality control, were normalized and are comparable with each other. The T-test revealed 28 and 124 differentially expressed genes after three and six hours of cells cultivation with IFNα , respectively. Conclusions. The obtained data meet the conventional criteria of quality and are applicable for further evaluation of their biological significance. The R-codes used in this study can be used for the analysis of the microarrays data.
Keywords: DNA microarrays, interferon alpha, statistical environment R, Bioconductor, normalization

References

[1] Heller M. J. DNA microarray technology: devices, systems, and applications Annu. Rev. Biomed. Eng 2002 4:129–153.
[2] Ideker T., Galitski T., Hood L. A new approach to decoding life: systems biology Annu. Rev. Genomics Hum. Genet 2001 2:343–372.
[3] Li X., Quigg R. J., Zhou J., Gu W., Nagesh Rao P., Reed E. F. Clinical utility of microarrays: current status, existing challenges and future outlook Curr. Genomics 2008 9, N 7:466–474.
[4] GeneChip(R) Expression Analysis Technical Manual Santa Clara: Affymetrix Inc., 2004 108 p.
[5] Slonim D. K., Yanai I. Getting started in gene expression microarray analysis PLoS Comput. Biol 2009 5, N 10 e1000543.
[6] Forster T., Roy D., Ghazal P. Experiments using microarray technology: limitations and standard operating procedures J. Endocrinol 2003 178, N 2:195–204.
[7] Selvaraj S., Natarajan J. Microarray data analysis and mining tools Bioinformation 2011 6, N 3:95–99.
[8] Irizarry R. A., Bolstad B. M., Collin F., Cope L. M., Hobbs B., Speed T. P. Summaries of Affymetrix GeneChip probe level data Nucleic Acids Res 2003 31, N 4 e15.
[9] The analysis of gene expression data: Methods and Software / Eds G. Parmigiani, E. S. Garett, R. A. Irizarry, S. L. Zeger Amsterdam: Springer, 2003 456 p.
[10] Amaratunga D., Cabr)era J. Exploration and analysis of DNA microarray and protein array data New York: Willey-Interscience, 2004 246 p.
[11] Quackenbush J. Microarray data normalization and transformation Nat. Genet 2002 32, Suppl:496–501.
[12] Gentleman R. C., Carey V. J., Bates D. M., Bolstad B., Dettling M., Dudoit S., Ellis B., Gautier L., Ge Y., Gentry J., Hornik K., Hothorn T., Huber W., Iacus S., Irizarry R., Leisch F., Li C., Maechler M., Rossini A. J., Sawitzki G., Smith C., Smyth G., Tierney L., Yang J. Y., Zhang J. Bioconductor: open software development for computational biology and bioinformatics Genome Biol 2004 5, N 10 R80.
[13] Anderle P., Duval M., Draghici S., Kuklin A., Littlejohn T. G., Medrano J. F., Vilanova D., Roberts M. A. Gene expression databases and data mining Biotechniques 2003 Suppl:36–44.
[14] Simon R., Lam A., Li M. C., Ngan M., Menenzes S., Zhao Y. Analysis of gene expression data using BRB-Array Tools Cancer Inform 2007 3:11–17.
[15] Wang Y., Miao Z. H., Pommier Y., Kawasaki E. S., Player A. Characterization of mismatch and high-signal intensity probes associated with Affymetrix genechips Bioinformatics 2007 23, N 16:2088–2095.