Biopolym. Cell. 2013; 29(6):493-498.
Genomics, Transcriptomics and Proteomics
Expression of small heat shock proteins in Pisum sativum L. under gravity altered conditions
1Talalaiev A. S.
  1. M. G. Kholodny Institute of Botany, NAS of Ukraine
    2, Tereschenkivska Str., Kyiv, Ukraine, 01601

Abstract

Altered gravity induces significant changes in the gene expression profiles of the plant cell, which are indicative of stress conditions. One of the molecular mechanisms of cell adaptation is synthesis of small heat shock proteins (sHsp). The sHsps are chaperones, and as such, they assist in the protein folding and prevent the irreversible protein aggregation. Aim. The objective of this research was to determine the effect of simulated microgravity (clinorotation) and hypergravity (centrifugation) on the sHsp genes expression in the etiolated pea seedlings. Methods. The gene expression was examined with the reverse transcription and real-time PCR. Results. The qPCR results demonstrated that the altered gravity conditions do not change the expression of sHsp genes which belong to the subfamilies of different subcellular localization – cytosolic-nuclear Pshsp 17.1-CII and Pshsp18.1-CI, plastid – Pshsp26.2-P, endoplasmic reticulum – Pshsp22.7-ER and mitochondrial – Pshsp22.9-M. Conclusions. The relative qPCR results demonstrate that altered gravity and temperature elevation have different effects on the sHsp genes: unlike high temperature, altered gravity does not lead to the denaturation of cell proteins and, therefore, does not modulate the sHsp genes expression.
Keywords: small heat shock proteins, microgravity, hypergravity, etiolated seedlings, Pisum sativum

References

[1] Kordyum E. L. Biology of plant cells in microgravity and under clinostating Int. Rev. Cytol 1997 171:1–78.
[2] Matia I., Gonzalez-Camacho F., Herrandez R., Kiss J. Z., Gasset G., van Loon J. J., Marco R., Medina F. Plant cell proliferation and growth are altered by microgravity conditions in spaceflight J. Plant Physiol 2010 167, N 3:184–193.
[3] Paul A. L., Daugherty C. J., Bihn E. A., Chapman D. K., Norwood K. L., Ferl R. J. Transgene expression patterns indicate that spaceflight affects stress signal perception and transduction in Arabidopsis Plant Physiol 2001 126, N 2:613–621.
[4] Paul A. L., Popp M. P., Gurley W. B., Guy C., Norwood K. L., Ferl R. J. Arabidopsis gene expression patterns are altered during spaceflight Adv. Space Res 2005 36, N 7:1175–1181.
[5] Paul A.-L., Zupanska A. K., Ostrow D. T., Zhang Y., Sun Y., Li J.-L., Shanker S., Farmerie W. G., Amalfitano C. E., Ferl R. J. Spaceflight transcriptomes: unique responses to a novel environment Astrobiology 2012 12, N 1:40–56.
[6] Salmi M. L., Roux S. J. Gene expression changes induced by space flight in single-cells of the fern Ceratopteris richardii Planta 2008 229, N 1:151–159.
[7] Martzivanou M., Hampp R. Hyper-gravity effects on the Arabidopsis transcriptome Physiol. Plant 2003 118, N 2:221– 231.
[8] Babbick M., Dijkstra C. Larkin O. J., Anthony P., Davey M. R., Power J. B., Lowe K. C., Cogoli-Greuter M., Hampp R. Expression of transcription factors after short-term exposure of Arabidopsis thaliana cell cultures to hypergravity and simulated (2D/3-D clinorotation, magnetic levitation) Adv. Space Res 2007 39, N 7:1182–1189.
[9] Martzivanou M., Babbick M., Cogoli-Greuter M., Hampp R. Microgravity-related changes in gene expression after short-term exposure of Arabidopsis thaliana cell cultures Protoplasma 2006 229, N 2–4:155–162.
[10] Kozeko L., Kordyum E. Effect of hypergravity on the level of Heat Shock Proteins 70 and 90 in Pea seedlings Microgravity Sci. Technol 2008 21, N 1–2:175–178.
[11] Barjaktarovic Z., Nordheim A., Lamkemeyer T., Fladerer C., Madlung J., Hampp R. Time-course of changes in amounts of specific proteins upon exposure to hyper-g, 2-D clinorotation, and 3-D random positioning of Arabidopsis cell cultures J. Exp. Bot 2007 58, N 15–16:4357–4363.
[12] Vierling E. The roles of heat shock proteins in plants Annu. Rev. Plant Physiol. Plant Mol. Biol 1991 42:579–620.
[13] Waters E. R., Lee G. J., Vierling E. Evolution, structure and function of the small heat shock proteins in plants J. Exp. Bot 1996 47, N 3:325–338.
[14] Siddique M., Gernhard S., von Koskull-Doring P., Vierling E., Scharf K.-D. The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties Cell Stress Chaperones 2008 13, N 2:183–197.
[15] Waters E. R. The evolution, function, structure, and expression of the plant sHSPs J. Exp. Bot 2013 64, N 2:391–403.
[16] Wehmeyer N., Hernandez L. D., Finkelstein R. R., Vierling E. Synthesis of small heat-shock proteins is a part of the developmental program of a late seed maturation Plant Physiol 1996 112, N 2:747–757.
[17] Pfaffl M. W. A new mathematical model for relative quantification in real-time RT-PCR Nucleic Acids Res 2001 29, N 9 e45.
[18] DeRocher A. E., Vierling E. Developmental control of small heat shock protein expression during pea seed maturation Plant J 1994 5, N 1:93–102.