Biopolym. Cell. 2013; 29(5):382-388.
Structure and Function of Biopolymers
Role of tRNAPro in pretransfer editing of alanine by prolyl-tRNA synthetase
1Boyarshin K. S., 1Priss A. E., 1Kriklivyi I. A., 1Kovalenko O. P., 1Yaremchuk A. D., 1Tukalo M. A.
  1. State Key Laboratory of Molecular and Cellular Biology
    Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

Aim. To characterize the process of tRNA-dependent pretransfer edi- ting of alanine by prolyl-tRNA synthetase of bacteria Enterococcus faecalis (ProRSEf). Methods. Velocity of the editing processes in vitro was determined by ATP hydrolysis by ProRSEf. Pretransfer and posttransfer editing were experimentally separated by site-directed mutagenesis. Results. tRNA-dependent pretransfer editing is characterized by three-fold larger velocity then tRNA-independent editing. Effectivity of the process depends on the presence of 2'-hydroxyle group of A76 tRNAPro. In the absence of tRNAPro selective release of alanyl-AMP occurs simultaneously with tRNA-independent pretransfer editing. Released alanyl-AMP can be re-bound and hydrolyzed. Conclusions. tRNA-dependent pretransfer editing of alanine by ProRSEf is the catalytic mechanism, mediated by 2'-hydroxyl group of A76 tRNAPro. In the absence of tRNAPro tRNA-independent pretransfer editing and selective release of alanyl-AMP occur.
Keywords: editing, prolyl-tRNA synthetase, protein synthesis

References

[1] Ibba M., Soll D. Aminoacyl-tRNA synthesis Annu. Rev. Biochem 2000 69:617–650.
[2] Loftfield R. B., Vanderjagt D. The frequency of errors in protein biosynthesis Biochem. J 1972 128, N 5:1353–1356.
[3] Jakubowski H. Goldman E. Editing of errors in selection of amino acids for protein synthesis Microbiol. Rev 1992 56, N 3:412–429.
[4] Pauling L. The probability of errors in the process of synthesis of protein molecules Festschrift Arthur Stoll Basel: Birkhauser, 1957 597 p.
[5] Fersht A. R., Shindler J. S., Tsui W. C. Probing the limits of protein-amino acid side chain recognition with the aminoacyl-tRNA synthetases. Discrimination against phenylalanine by tyrosyltRNA synthetases Biochemistry 1980 19, N 24:5520– 5524.
[6] Fersht A. R. Editing mechanisms in protein synthesis. Rejection of valine by the isoleucyl-tRNA synthetase Biochemistry 1977 16, N 5:1025–1030.
[7] Lincecum T. L. Jr., Tukalo M., Yaremchuk A., Mursinna R. S., Williams A. M., Sproat B. S., Van Den Eynde W., Link A., Van Calenbergh S., Grotli M., Martinis S. A., Cusack S. Structural and mechanistic basis of preand posttransfer editing by leucyltRNA synthetase Mol. Cell 2003 11, N 4:951–963.
[8] Dock-Bregeon A. C., Rees B., Torres-Larios A., Bey G., Caillet J., Moras D. Achieving error-free translation; the mechanism of proofreading of threonyl-tRNA synthetase at atomic resolution Mol. Cell 2004 16, N 3:375–386.
[9] Ling J., Roy H., Ibba M. Mechanism of tRNA-dependent editing in translational quality control Proc. Natl Acad. Sci. USA 2007 104, N 1:72–77.
[10] Hopfield J. J. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity Proc. Natl. Acad. Sci. USA 1974 71, N 10:4135–4139.
[11] Ninio J. Kinetic amplification of enzyme discrimination Biochimie 1975 57, N 5:587–595.
[12] Beuning P., Musier-Forsyth K. Hydrolytic editing by a class II aminoacyl-tRNA synthetase Proc. Natl Acad. Sci. USA 2000 97, N 16:8916–8920.
[13] Stathopoulos C., Li T., Longman R., Vothknecht U. C., Becker H. D., Ibba M., Soll D. One polypeptide with two aminoacyltRNA synthetase activities Science 2000 287, N 5452 P. 479–482.
[14] Ahel I., Stathopoulos C., Ambrogelly A., Sauerwald A., Toogood H., Hartsch T., Soll D. Cysteine activation is an inherent in vitro property of prolyl-tRNA synthetases J. Biol. Chem 2002 277, N 38:34743–34738.
[15] Hati S., Ziervogel B., Sternjohn J., Wong F. C., Nagan M. C., Rosen A. E., Siliciano P. G., Chihade J. W., Musier-Forsyth K. Pre-transfer editing by class II prolyl-tRNA synthetase: role of aminoacylation active site in «selective release» of noncognate amino acids J. Biol. Chem 2006 281, N 38:27862– 27872.
[16] Splan K. E., Ignatov M. E., Musier-Forsyth K. Transfer RNA modulates the editing mechanism used by class II prolyl-tRNA synthetase J. Biol. Chem 2008 283, N 11:7128–7134.
[17] Boyarshin K. S., Kriklivyi I. A., Rayevsky A. V., Himin A. A., Yaremchuk A. D., Tukalo M. A. Study on the putative active site of Enterococcus faecalis prolyltRNA synthetase editing domain by methods of site-directed mutagenesis Biopolym. Cell 2009 25, N 1:39–42.
[18] Boiarshin K. S., Kriklivyi I. A., Tukalo M. A. tRNA-dependent editing of errors by prolyl-tRNA synthetase from bacteria Enterococcus faecalis Ukr. Biokhim. Zh 2008 80, N 6:52–59.
[19] Boyarshin K. S., Kriklivyi I. A., Yaremchuk A. D., Tukalo M. A. Cloning, expression and purification of tRNAPro from bacteria Enterococcus faecalis Biopolym. Cell 2009 25, N 6:445–450.
[20] Splan K. E., Musier-Forsyth K., Boniecki M. T., Martinis S. A. In vitro assays for the determination of aminoacyl-tRNA synthetase editing activity Methods 2008 44, N 2:119–128.
[21] Easterbrook-Smith S. B., Wallace J. C., Keech D. B. Pyruvate carboxylase: affinity labelling of the magnesium adenosine triphosphate binding site Eur. J. Biochem 1976 62, N 1:125–130.