Biopolym. Cell. 2013; 29(2):117-123.
Structure and Function of Biopolymers
Mitotic activity of anti-histone H1 sIgA-antibodies from milk of healthy mothers
1Starykovych M. O., 1Stoika R. S., 1Kit Yu. Ya.
  1. Institute of Cell Biology, NAS of Ukraine
    14/16, Drahomanov Str., Lviv, Ukraine, 79005

Abstract

Aim. Earlier, we have shown that antibody (AT) preparations obtained by precipitation with 50 % ammonium sulfate from milk of some healthy mothers possess pro-proliferative activity toward transformed and tumor cells in vitro (Kit et al., 2008). We hypothesized that this effect is associated with the presence of the anti-histone H1 sIgAs in AT preparations. Methods. To check this hypothesis, we obtained electrophore- tically homogeneous anti-histone H1 sIgAs from milk of healthy mothers by sequential chromatography on protein A-Agarose, protein G- Sepharose and histone H1-Sepharose respectively. These Ab were tested on a proliferative activity toward human T-leukemia Jurkat and human melanoma SK-MEL cells. Results. It was found that anti-histone H1 sIgAs are able to stimulate proliferation of both tumor cell lines. Mitotic effect of these AB was confirmed with an increase of signal proteins involved in cell proliferation (c-Myc, MAP-and cdc2-protein kinases), detected by Western-blot analysis. We also studied the antigenic reactivity of anti-histone H1 sIgAs toward SK-MEL cell proteins. It was observed that these AB possessed an affinity for a number of melanoma cell proteins with molecular masses of 60, 55, 48 and 38 kDa. Conclusions. It has been found that anti-histone H1 sIgA antibodies can stimulate proliferation of human T-leukemia Jurkat and human melanoma SK-MEL cells in vitro. The cross reactivity of these AB could serve as an explanation of their mitotic activity toward the target cells.
Keywords: human milk, autoantibodies, anti-histone H1 sIgA, tumor cell, proliferation

References

[1] Poletaev A. B. The immunological homunculus (Immunculus) in norm and pathology Biochemistry (Mosc) 2002 67, N 5 P. 600–608.
[2] Mackay I. R. Burnet oration. Autoimmunity: paradigms of Burnet and complexities of today Immunol. Cell. Biol 1992 70, Pt 3 P. 159–171.
[3] Avrameas S. Natural autoantibodies. from «horror autotoxicus» to «gnothi seauton» Immunol. Today 1991 12, N 5 P. 154–159.
[4] Bouvet J. P., Dighiero G. From natural polyreactive autoantibodies to a la carte monoreactive antibodies to infection agents: is it a small world after all? Infect. Immun 1998 66, N 1 P. 1–4.
[5] Dawson K. H., Bell D. A. Production and pathogenic effect of anti-DNA antibodies: relevance to antisense research Antisense Res. Dev 1991 1, N 4 P. 351–360.
[6] Kurien B. T., Scofield R. H. Autoantibody determination in the diagnosis of systemic lupus erythematosus Scan. J. Immunol 2006 64, N 3 P. 227–235.
[7] Bouvet J. P., Pires R., Iscaki S., Pillot J. Nonimmune macromolecular complexes of Ig in human gut lumen. Probable enhancement of antibody functions J. Immunol 1993 151, N 5: 2562–2571.
[8] Quan C. P., Berneman A., Pires R., Avrameas S, Bouvet J. P. Natural polyreactive secretory immunoglobulin A autoantibodies as a possible barrier to infection in humans Infect. Immun 1997 65, N 10:3997–4004.
[9] Hamadeh R. M., Galili U., Zhou P., Griffiss J. M. Anti-alphagalactosyl immunoglobulin A (IgA), IgG, and IgM in human secretions Clin. Diagn. Lab. Immunol 1995 2, N 2 P. 125–131.
[10] Davin J. C., Malaise M., Foidart J., Mahieu P. Anti-alpha-galactosyl antibodies and immune complexes in children with Henoch-Schonlein purpura or IgA nephropathy Kidney Int 1987 31, N 5 P. 1132–1139.
[11] Cheng H. M., Sam C. K. Bacterial immunity and immunogenesis of normal human salivary IgA and serum IgG2 antiphospholipid autoantibody: a link? Immunol. Lett 1990 26, N 1 P. 7–10.
[12] Hanson L. A., Adlerberth I., Carlsson B., Zaman S. Hahn-Zoric M., Jalil F. Antibody-mediated immunity in the neonate Padiatr. Padol 1990 25, N 5 P. 371–376.
[13] Jorgensen C., Bologna C., Gutierrez M., Anaya J. M, Reme T., Sany J. Serum levels of secretory IgA and in vitro production of IgA in rheumatoid arthritis Clin. Exp. Rheumatol 1993 11, N 5 P. 541–544.
[14] Wilson T., Ganendren R. Serum concentration of secretory IgA in pregnancies delivering at term or preterm Prostaglandins 1992 44, N 4 P. 373–378.
[15] Vincent C., Cozon G., Zittoun V., Mellquist M., Kazatchkine M. D., Czerkinsky C., Revillard J. P. Secretory immunoglobulins in serum from human immunodeficiency virus (HIV)-infected patients J. Clin. Immunol 1992 12, N 5 P. 381–388.
[16] Kuliha V. N., Malov Y. S., Dudarenko S. V., Pashyna M. H. Changes in the level of secretory immunoglobulin A in the blood of patients with whey ulcer Practical medicine 1999 69, N 7 P. 60–61.
[17] Collado A., Sanmarti R., Serra C., Gallart T. Canete J. D., Gratacos J., Vives J., Munoz-Gomez J. Serum levels of secretory IgA in ankylosing spondylitis Scand. J. Rheumatol 1991 20, N 3 P. 153–158.
[18] Fukuda Y., Imoto M., Hayakawa T. Serum levels of secretory immunoglobulin A in liver disease Am. J. Gastroenterol 1985 80, N 4 P. 237–241.
[19] Kvale D., Rognum T. O., Brandtzaeg P. Elevated levels of secretory immunoglobulins A and M in serum of patient with large bowel carcinoma indicate liver metastasis Cancer 1987 59, N 2 P. 203–207.
[20] Kit Yu. Ya., Starykovych M. O., Bilyy R. O., Skorohyd N. R., Yanyv L. B., Stoika R. S. Immunoglobulins of colostrum as novel molecular markers of preclinical diagnostics of autoimmune disorders in parturient women Biotechnology 2008 1, N 3:37–46.
[21] Starykovych M., Kit Yu., Stoika R. Cytotoxic activity of antiDNA antibody sIgA in milk of clinically healthy mothers Studia Biologica 2011 5, N 3 P. 29–40.
[22] Magorivska I., Bilyy R., Shalay O., Loginsky V., Kit Y., Stoika R. Blood serum immunoglobulins of patients with multiple myeloma are capable of hydrolysing histone H1 Exp. Oncol 2009 31, N 2 P. 97–101.
[23] Kit Yu., Starykovych M., Mahorivska I., Bilyy R., Stoika R. Novel serine-protease like catalytic antibodies with double substrate proteolytic activity in human blood serum and colostrums Serine proteases: Mechanism, structure and evolution. Eds I. Chiba, T. Kamio New York: Nova Sci. Publ. Inc., 2012 P. 71–89.
[24] Laemmly U.K. Cleavage of structural protein during the assembly of the head of bacteriophage T4 Nature 1970 227, N 5259 P. 680–685.
[25] Kit Y., Stoika R. Catalytically active antibodies (abzymes) of human milk Ukr. Biokhim. Zh 2007 79, N 2 P. 5–16.
[26] Immunoglobulins . Eds G. Litmen, R. Gud Moscow: Mir, 1981 212 p.
[27] Dhanasekaran N., Premkumar Reddy E. Signaling by dual specificity kinases Oncogene 1998 17, N 11 P. 1447–1455.
[28] Chou T. Y., Hart G. W., Dang C. V. c-Myc is glycosylated at threonine 58, a known phosphorylation site and a mutational hot spot in lymphomas J. Biol. Chem 1995 270, N 32:18961–18965.
[29] Wasylishen A. R., Penn L. Z. Myc: the beauty and the beast Genes Cancer 2010 1, N 6:532–541.
[30] Galaktionov K., Chen X., Beach D. Cdc25 cell-cycle phosphatase as a target of c-myc Nature 1996 382, N 6591 P. 511–517.
[31] Magorivska I. B., Bilyy R. O., Havryluk A. M., Chop'yak V. V., Stoika R. S., Kit Y. Y. Anti-histone H1 IgGs from blood serum of systemic lupus erythematosus patients are capable of hydrolyzing histone H1 and myelin basic protein J. Mol. Recognit 2010 23, N 5:495–502.
[32] Volodko N. A. Metastasis of cancer: the role of tumor environment factors L'viv: Missioner, 2002 177 p.
[33] Takeda T., Sakata M., Minekawa R., Yamamoto T., Hayashi M., Tasaka K., Murata Y. J. Human milk induces fetal small intestinal cell proliferation involvement of a different tyrosine kinase signaling pathway from epidermal growth factor receptor J. Endocrinol 2004 181, N 10:449–457.