Biopolym. Cell. 2013; 29(1):42-48.
Structure and Function of Biopolymers
Studies on interaction of oligoadenylates with proteins in vitro by MALDI-TOF mass spectrometry
- Institute of Molecular Biology and Genetics, NAS of Ukraine
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680 - Palladin Institute of Biochemistry, NAS of Ukraine
9, Leontovycha Str., Kyiv, Ukraine, 01601
Abstract
Aim. To investigate the ability of «core» 2'-5'- and 3'-5'-oligoadenylates (OA) to interact with α-interferon – a key protein of the 2'- 5'-OAS/RNAase L system responsible for antiviral cell defense. Methods. MALDI-TOF mass spectrometry was used in the studies on protein-ligand interactions. Results. It was shown that 2'-5'-A3 and its epoxy-modified analog 2'-5'-A3-epo can bind to α-interferon in vitro. 3'-5'-tri- adenylate is also capable of binding to this protein. One to five ligand molecules can bind simultaneously to the molecule of α-interferon. At the same time, all studied oligonucleotides do not bind to insulin. Conclusions. It was established that «core» 2'-5'- and 3'-5'-triadenylates are capable of multiple interaction with α-interferon to form stable complexes. However, they do not bind to insulin which is not involved in the 2'-5'-OAS/RNAase L system.
Keywords: oligoadenylates, insulin, α-interferon, MALDI-TOF mass spectrometry
Full text: (PDF, in English) (PDF, in Ukrainian)
References
[1]
Player M. R., Torrence P. F. The 2-5A system: modulation of viral and cellular processes through acceleration of RNA degradation Pharmacol. Ther 1998 78, N 2:55–113.
[2]
Morin B., Rabah N., Boretto-Soler J., Tolou H., Alvarez K., Canard B. High yield synthesis, purification and characterisation of the RNase L activators 5'-triphosphate 2'-5'-oligoadenylates Antiviral Res 2010 87, N 3:345–352.
[3]
Nagaoka K., Kitamura Y., Ueno Y., Kitade Y. 5'-O-dephosphorylated 2',5'-oligoadenylate (2-5A) with 8-methyladenosine at the 2'-terminus activates human RNase L Bioorg. Med. Chem. Lett 2010 20, N 3:1186–1188.
[4]
Lopp A., Reintamm T., Kuusksalu A., Tammiste I., Pihlak A., Kelve M. Natural occurrence of 2',5'-linked heteronucleotides in marine sponges Mar. Drugs 2010 8, N 2:235–254.
[5]
Kiuru E., Ora M., Beigelman L., Blatt L., Lonnberg H. Synthesis and enzymatic deprotection of fully protected 2'-5' oligoadenylates (2-5A): towards a prodrug strategy for short 2-5A Chem. Biodivers 2012 9, N 4:669–688.
[6]
Wang X., Tian H., Lee Z., Heston W. D. Structure-activity relationships of 2',5'-oligoadenylate analogue modifications of prostate-specific membrane antigen (PSMA) antagonists Nucleosides Nucleotides Nucleic Acids 2012 31, N 5:432–444.
[7]
Tanaka N., Nakanishi M., Kusakabe Y., Goto Y., Kitade Y., Nakamura K. T. Structural basis for recognition of 2'-5'-linked oligoadenylats by human ribonuclease L EMBO J 2004 23, N 20:3929–3938.
[8]
Tsai S. C. Biomacromolecules. Introduction to structure, function and informatics New Jersey: Willey-Liss, 2007 740 p.
[9]
Silverman R. H. A scientific journey through the 2-5A/RNase L system Cytokine Growth Factor Rev 2007 18, N 5–6:381–388.
[10]
Kristiansen H., Gad H. H., Eskildsen-Larsen S., Despres P., Hartmann R. The oligoadenylate synthetase family: an ancient protein family with multiple antiviral activities J. Interferon Cytokine Res 2011 31, N 1:41–47.
[11]
Chakrabarti A., Ghosh P. K., Banerjee S., Gaughan C., Silverman R. H. RNase L triggers autophagy in response to viral infections J. Virol 2012 86, N 20:11311–11321.
[12]
Clemens M. J., Vaquero C. M. Inhibitor of protein synthesis by double-stranded RNA in reticulocyte lysates: evidence for activation of an endoribonuclease Biochem. Biophys. Res. Commun 1978 83, N 1:59–68.
[13]
Meuers E., Chong K., Galabru J., Thomas N. S., Kerr I. M., William B. R., Hovanessian A. G. Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon Cell 1990 62, N 2:379–390.
[14]
Pavlovic J., Staeheli P. The antiviral potentials of Mx proteins J. Interferon Res 1991 11, N 4:215–219.
[15]
Malathi K., Saito T., Crochet N., Barton D. J., Gale M. Jr., Silverman R. H. RNase L releases a small RNA from HCV RNA that refolds into a potent PAMP RNA 2010 16, N 11:2108– 2119.
[16]
Gogichaeva N. V., Williams T., Alterman M. A. MALDI-TOF tandem mass spectrometry as a new toll for amino acid analysis J. Am. Soc. Mass Spectrom 2007 18, N 2:279–284.
[17]
McIver R. T. Jr., Li Y., Hunter R. L. High-resolution laser desorption mass spectrometry of peptides and small proteins Proc. Natl Acad. Sci. USA 1994 91, N 11:4801–4805.
[18]
Mass spectrometry of proteins and peptides Ed. Chapman J. R Totowa: Humana Press, 2000 544 p.
[19]
Hettich R., Buchanan M. Structural characterization of normal and modified oligonucleotides by matrix-assisted laser desorption fourier transform mass spectrometry J. Am. Soc. Mass Spectrom 1991 2, N 5:402–412.
[20]
Kuusksalu A., Subbi J., Pehk T., Reintamm T., Muller W. E., Kelve M. Identification of the reaction products of (2'-5')oligoadenylate synthetase in the marine sponge Eur. J. Biochem 1998 257, N 2:420–426.
[21]
Faulstich K., Worner K., Brill H., Engels J. W. A sequencing method for RNA oligonucleotides based on mass spectrometry Anal. Chem 1997 69, N 21:4349–4353.
[22]
Banoub J. H., Newton R. P., Esmans E., Ewing D.E., Mackenzie G. Recent developments in mass spectrometry for the characterization of nucleosides, nucleotides, oligonucleotides, and nucleic acids Chem. Rev 2005 105, N 5:1869–1915.
[23]
Liebler D. C. Introduction to proteomics: tools for the new biology Totowa: Humana Press, 2002 198 p.
[24]
Kuhn-Holsken E., Lenz C., Sander B., Luhrmann R., Urlaub H. Complete MALDI-Tof MS analysis of cross-linked peptideRNA oligonucleotides derived from nonlabeled UV-irradiated ribonucleoprotein RNA 2005 11, N 12:1915–1930.
[25]
Tang X., Callahan J. H., Zhou P., Vertes A. Noncovalent proteinoligonucleotide interactions monitored by matrix-assisted laser desorption/ionization mass spectrometry Anal. Chem 1995 67, N 24:4542–4548.
[26]
Salih B. Determination of high molecular weight biomolecules and their non-covalent complexes in MALDI-TOF-MS 4th AACD Congress (29 Sept 3 Oct. 2004, Aydin, Turkey): Proceedings Book Aydin, 2004:352–354.
[27]
Luo Y., Li T., Yu F., Kramer T., Cristea I. M. Resolving the composition of protein complexes using a MALDI LTQ Orbitrap J. Am. Soc. Mass Spectrom 2010 21, N 1:34–46.
[28]
Chiang C. K., Yang Z., Lin Y. W., Chen W. T., Lin H. J., Chang H. T. Detection of proteins and protein-ligand complexes using HgTe nanostructure matrixes in surface-assisted laser desorption/ionization mass spectrometry Anal. Chem 2010 82, N 11:4543–4550.
[29]
Dubey I. Ya., Dubey L. V. Synthesis of (2'-5')-triadenylates and their analogues using O-nucleophilic catalysis of internucleotide coupling reaction Biopolym. Cell 2007 23, N 6:538–544.
[30]
Tkachuk Z. Yu., Dubey I. Ya., Yakovenko T. G., Semernikova L. I., Shapoval S. O., Artemenko V. S., Dubey L. V. Synthesis of 2'5'-oligoadenylates and study of their effect on proliferation and migration of bone marrow stem cells of mice in vitro and in vivo Biopolym. Cell 2007 23, N 1:14–20.
[31]
Voyager™ Biospectrometry™ workstation with delayed Extraction® technology. User guide, version 5.1 Foster City: Applied Biosystems, 2001:738.
[32]
Zhou G. H., Luo G. A., Sun G.-Q., Cao Y. C., Zhu M. S. Study on the quality of recombinant proteins using matrix-assisted laser desorption ionization time of flight mass spectrometry World J. Gastroenterol 1999 5, N 3:235–240.
[33]
Pokholenko Ya. A., Porubleva L. V., Dubey I. Ya., Rebriev A. V., Sutugina L. P., Gromovoy T. Yu., Pokrovskiy V. O., Obolenskaya M. Yu., Chernykh S. I. Obtaining and characteristics of national preparation interferon a-2b with prolonged effect. Ukr. Biokhim. Zh. 2008 80, N 6:92–100.
[34]
Sidorik L. L., Dubey I. Ya., Bobyk V. I., Kozlov A. V., Fedorkova O. M., Kovenya T. V., Ryabenko D. V., Sergienko O. V., Trunina I. V., Pogrebnoy P. V., Matsuka G. H. Therapeutic effects of various doses of 2'-5'-oligoadenylates in experimental myosin-induced myocardial damage. Dop. NAN Ukrainy 2001 N 9:161–165.
[35]
Filippov I. B., Tkachuk Z. Yu., Dubey I. Ya. Mechanisms of vessel tone regulation by 2'-5'-oligoadenylates Dop. NAN Ukrainy 2010 N 6:152–157.
[36]
Tkachuk Z. Yu., Dubey L. V., Tkachuk V. V., Tkachuk L. V., Losytskyy M. Yu., Yashchuk V. M., Dubey I. Ya. Studying the interaction of 2'-5'-oligoadenylates and their analogues with proteins by fluorescence spectroscopy Ukr. Biokhim. Zh 2011 83, N 1:45–53.
[37]
Silverman R. H. Viral encounters with 2'-5'-oligoadenylate synthetase and RNase L during the interferon antiviral response J. Virol 2007 81, N 23:12720–12729.
[38]
Chakrabarti A., Jha B., Silverman R. H. New insights into the role of RNase L in innate immunity J. Interferon Cytokine Res 2011 31, N 1:49–57.
[39]
Anderson B. R., Muramatsu H., Jha B. K., Silverman R. H., Weissman D., Kariko K. Nucleoside modifications in RNA limit activation of 2'-5'-oligoadenylate synthetase and increase resistance to cleavage by RNase L Nucleic Acids Res 2011 39, N 21:9329–9338.