Biopolym. Cell. 2012; 28(6):486-492.
Molecular Biophysics
Conformational relaxations of human serum albumin studied by molecular dynamics simulations with pressure jumps
1Yesylevskyy S. O., 2Hushcha T. O.
  1. Institute of Physics, NAS of Ukraine
    46, Prospect Nauki, Kyiv, Ukraine, 03028
  2. Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine
    1, Murmans'ka Str., Kyiv, Ukraine, 02094

Abstract

Aim. In this work we developed a novel technique of obtaining the spectrum of conformational relaxations in a solvated protein using non-equilibrium molecular dynamics simulation. Methods. Structural relaxations in the protein are initiated by the abrupt jump of pressure in the NPT simulations. The change of the protein volume after the jump is monitored and the Maximum Entropy Method is used for spectral decomposition of the volume relaxation curve. The human serum albumin (HSA) is used as a test case. Results. The obtained relaxation spectrum of HSA contains one component attributed to the bulk water and five components caused by the relaxations of the protein globule and its hydration shell. All relaxation components are in good agreement with the available experimental data obtained by the time-resolved spectroscopy and the broadband acoustic spectroscopy of HSA. Conclusions. The developed technique allows obtaining spectra of conformational relaxations of soluble proteins in a range of time scales from ~0.1 ps to ~50 ns utilizing single non-equilibrium molecular dynamics simulation.
Keywords: protein relaxations, molecular dynamics, maximum entropy method, pressure jump, HSA

References

[1] Brooks C. L. I., Karplus M., Pettitt B. M. Proteins: a theoretical perspective of dynamics, structure and thermodynamics (Advances in chemical physics. Vol. 71 New York: John Wiley & Sons, 1988 251 p.
[2] Lakowicz J. R. Principles of fluorescence spectroscopy New York; Heidelberg: Springer, 2006 Vol. 26 954 p.
[3] Kaatze U., Hushcha T. O., Eggers F. 2000. Ultrasonic broadband spectrometry of liquids a research tool in pure and applied chemistry and chemical physics J. Solution Chem.29, N 4: 299–368.
[4] Yesylevskyy S. O., Demchenko A. P. 2011 Fluorescence probing in structurally anisotropic materials Advanced Fluorescence Reporters in Chemistry and Biology III: Springer Series on Fluorescence 113:119–158.
[5] Zhang L., Wang L., Kao Y. T., Qiu W., Yang Y., Okobiah O., Zhong D. 2007 Mapping hydration dynamics around a protein surface Proc. Natl Acad. Sci. USA 104, N 47:18461–18466.
[6] Toptygin D., Woolf T. B., Brand L. 2010 Picosecond protein dynamics: the origin of the time-dependent spectral shift in the fluorescence of the single Trp in the protein GB1 J. Phys. Chem. B 114, N 34:11323–11337.
[7] Golosov A. A., Karplus M. 2007 Probing polar solvation dynamics in proteins: a molecular dynamics simulation analysis J. Phys. Chem. B 111, N 6:1482–1490.
[8] Hushcha T., Kaatze U., Peytcheva A. 2004 Dynamics of human serum albumin studied by acoustic relaxation spectroscopy Biopolymers 74, N 1–2:32–36.
[9] Hushcha T., Peytcheva A., Kaatze U. 2002 Broadband acoustic spectra of aqueous solutions of human serum albumin J. Phys.: Condens. Matter 14, N 14:9461–9464.
[10] Buzady A., Erostyak J., Somogyi B. 2000 Phase-fluorimetry study on dielectric relaxation of human serum albumin Biophys. Chem 88, N 1–3:153–163.
[11] Lakowicz J. R., Gryczynski I. 1992 Tryptophan fluorescence intensity and anisotropy decays of human serum albumin resulting from one-photon and two-photon excitation Biophys. Chem 45, N 1:1–6.
[12] Qiu W., Kao Y. T., Zhang L., Yang Y., Wang L., Stites W. E., Zhong D., Zewail A. H. 2006 Protein surface hydration mapped by sitespecific mutations Proc Natl. Acad. Sci. USA 103, N 38:13979–13984.
[13] Qiu W., Zhang L., Okobiah O., Yang Y., Wang L., Zhong D., Zewail A. H. 2006 Ultrafast solvation dynamics of human serum albumin: correlations with conformational transitions and site-selected recognition J. Phys. Chem. B 110, N 21:10540–10549.
[14] Van der Spoel D., Lindahl E., Hess B., Groenhof G., Mark A. E., Berendsen H. J. 2005 GROMACS: fast, flexible, and free J. Comput. Chem 26, N 16:1701–1718.
[15] Hess B., Kutzner C., Van Der Spoel D., Lindahl E . 2008 GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation J. Chem. Theory Comput 4, N 2:435–447.
[16] van Gunsteren W. F., Kruger P., Billeter S. R., Mark A. E., Eising A. A., Scott W. R. P., Huneberger P. H., Tironi I. G. 1996 Biomolecular simulation: The GROMOS 96 manual and user guide Groningen; Zurich: Biomos/Hochschulverlag AG, an der ETH Zurich, 1044 p.
[17] Darden T., York D., Pedersen L. 1993 Particle mesh Ewald: An N log(N) method for Ewald sums in large systems J. Chem. Phys 98, N 12:10089–10092.
[18] Hess B., Bekker H., Berendsen H. J. C., Fraaije J. G. E. M. 1997 LINCS: A linear constraint solver for molecular simulations J. Comp. Chem 18, N 12:1463–1472.
[19] Miyamoto S., Kollman P. A. 1992 Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models J. Comp. Chem 13, N 8:952–962.
[20] Feenstra K. A., Hess B., Berendsen H. J. C. 1999 Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems J. Comp. Chem 20, N 8:786–798.
[21] Berendsen H. J. C., Postma J. P. M., van Gunsteren W. F., Hermans J. Interaction models for water in relation to protein hydration Intermolecular Forces / Ed. B. Pullman Dordrecht: Reidel, 1981:331–342.
[22] Landau L. D., Lifshitz E. M. Course of theoretical physics. (Statistical physics) / 3rd ed Oxford; New York: Butterworth-Heinemann, 1980 Vol. 5, pt 1 544 p.
[23] Skilling J. Classic maximum entropy Maximum entropy and bayesian methods / Ed. J. Skilling Dordtrecht: Kluwer Acad. Publ., 1989:45–52.
[24] Steinbach P. J., Ansari A., Berendzen J., Braunstein D., Chu K., Cowen B. R., Ehrenstein D., Frauenfelder H., Johnson J. B.,Lamb D. C., Luck S., Mourant J. R., Nienhaus G. U., Ormos P., Philipp R., Xie A., Young R. D. Ligand binding to heme proteins: connection between dynamics and function Biochemistry. 1991. 30, N 16:3988–4001.
[25] Steinbach P. J., Chu K., Frauenfelder H., Johnson J. B., Lamb D. C., Nienhaus G. U., Sauke T. B., Young R. D. Determination of rate distributions from kinetic experiments Biophys. J. 1992. 61, N 1:235–245.
[26] Bermejo F. J., Santoro J., Mompean F. J., Dore J. C. On maximum entropy estimation of structural parameters from neutron scattering structure factors in disordered systems. Nucl. Instrum. Methods Phys. Res. 1987. 28, N 1:135–145.
[27] Skilling J., Bryan R. K. Maximum entropy image reconstruction: general algorithm. Mon. Not. R. Astron. Soc. 1984 211, N 1:111–124.
[28] Gull S. F., Newton T. J. Maximum entropy tomography. Appl. Opt. 1986. 25, N 1:156–160.
[29] van der Spoel D., van Maaren P. J., Berendsen H. J. C. A systematic study of water models for molecular simulation: Derivation of water models optimized for use with a reaction field. J. Chem. Phys. 1998. 108, N 24:10220–10230.