Biopolym. Cell. 2012; 28(6):424-428.
Structure and Function of Biopolymers
Generation of monoclonal antibodies specific to ribosomal protein S6 kinase 1
1Savinska L. O., 1Klipa O. M., 1Demchuk N. O., 1Ovcharenko G. V., 1Malanchuk O. M., 1Tykhonkova I. O., 1Palchevskyy S. S., 1Filonenko V. V.
  1. State Key Laboratory of Molecular and Cellular Biology
    Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

The aim of this study was to produce monoclonal antibodies directed to the N-terminal regulatory region of S6K1, which shows very low homology to S6K2. Methods. Hybridoma technology, ELISA, Western blot, Immunoprecipitation. Results. Three hybridoma clones (A1, A2 and A3) producing mAbs specific to ribosomal protein S6 kinase 1 have been generated. Specificity of mAbs has been confirmed by Western blot and immunoprecipitation technique. Conclusions. The obtained antibodies are suitable for elucidating signal transduction pathways involving S6K1.
Keywords: ribosomal protein S6 kinase, mAbs

References

[1] Jeno P., Ballou L. M., Novak-Hofer I., Thomas G. 1988 Identification and characterization of a mitogenicactivated S6 kinase Proc. Natl Acad. Sci. USA 85, N 2:406–410.
[2] Gout I., Minami T., Hara K., Tsujishita Y., Filonenko V., Waterfield M. D., Yonezawa K. 1998 Molecular cloning and characterization of a novel p70 S6 kinase, p70 S6 kinase beta containing a proline-rich region J. Biol. Chem 273, N 46 P. 30061–30064.
[3] Martin K. A., Schalm S. S., Romanelli A., Keon K. L., Blenis J. 2001 Ribosomal S6 kinase 2 inhibition by a potent C-terminal repressor domain is relieved by mitogen-activated protein-extracellular signal-regulated kinase kinase-regulated phosphorylation J. Biol. Chem 276, N 11:7892–7898.
[4] Koh H., Jee K., Lee B., Kim J., Kim D., Yun Y. H., Kim J. W., Choi H. S., Chung J. 1999 Cloning and characterization of a nuclear S6 kinase, S6 kinase-related kinase (SRK); a novel nuclear target of Akt Oncogene 18, N 36:5115–5119.
[5] Pende M., Kozma S. C., Jaquet M., Oorschot V., Burcelin R., Le Marchand-Brustel Y., Klumperman J., Thorens B., Thomas G. 2000 Hypoinsulinaemia, glucose intolerance and diminished b-cell size in S6K1-deficient mice Nature 408, N 6815 P. 994–997.
[6] Ohanna M., Sobering A. K., Lapointe T., Lorenzo L., Praud C., Petroulakis E., Sonenberg N., Kelly P. A., Sotiropoulos A., Pende M. 2005 Atrophy of S6K1(-/-) skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control Nat. Cell. Biol 7, N 3:286–294.
[7] Burnett P. E., Blackshaw S., Lai M. M., Qureshi I. A., Burnett A. F., Sabatini D. M., Snyder S. H. 1998 Neurabin is a synaptic protein linking p70 S6 kinase and the neuronal cytoskeleton Proc. Natl Acad. Sci. USA 95, N 14:8351–8356.
[8] Lee-Fruman K. K., Kuo C. J., Lippincott J., Terada N., Blenis J. 1999 Characterization of S6K2, a novel kinase homologous to S6K1 Oncogene 18, N 36:5108–5114.
[9] Fenton T. R., Gout I. T. 2011 Functions and regulation of the 70 kDa ribosomal S6 kinases Int. J. Biochem. Cell Biol 43, N 1 P. 47–59.
[10] Wang X., Li W., Williams M., Terada N., Alessi D. R., Proud C. G. 2001 Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase EMBO J 20, N 16:4370–4379.
[11] Richardson C. J., Broenstrup M., Fingar D. C., Julich K., Ballif B. A., Gygi S., Blenis J. 2004 SKAR is a specific target of S6 kinase 1 in cell growth control Curr. Biol 14, N 17:1540– 1549.
[12] Ma X. M., Yoon S. O., Richardson C. J., Julich K., Blenis J. 2008 SKAR links pre-mRNA splicing to mTOR/S6K1-mediated enhanced translation efficiency of spliced mRNAs Cell 133, N 2:303–313.
[13] Wilson K. F., Wu W. J., Cerione R. A. 2000 Cdc42 stimulates RNA splicing via the S6 kinase and a novel S6 kinase target, the nuclear cap-binding complex J. Biol. Chem 275, N 48 P. 37307–37310.
[14] Goh E. T., Pardo O. E., Michael N., Niewiarowski A., Totty N., Volkova D., Tsaneva I. R., Seckl M. J., Gout I. 2010 Involvement of heterogeneous ribonucleoprotein F in the regulation of cell proliferation via the mammalian target of rapamycin/S6 kinase 2 pathway J. Biol. Chem 285, N 22:17065–17076.
[15] Fang J., Meng Q., Vogt P. K., Zhang R., Jiang B. H. 2006 A downstream kinase of the mammalian target of rapamycin, p70S6K1, regulates human double minute 2 protein phosphorylation and stability J. Cell. Physiol 209, N 2:261–265.
[16] Harada H., Andersen J. S., Mann M., Terada N., Korsmeyer S. J. 2001 p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD Proc. Natl Acad. Sci. USA 98, N 17:9666–96670.
[17] Harada H., Becknell B., Wilm M., Mann M., Huang L. J., Taylor S. S., Scott J. D., Korsmeyer S. J. 1999 Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A Mol. Cell 3, N 4:413–422.
[18] Savinska L. O., Kijamova R. G., Pogrebnoy P. V., Ovcharenko G. V., Gout I. T., Filonenko V. V. 2001 Comparative characterization of S6 kinase a and b isoforms expression in mammalian tissues Biopolym. Cell 17, N 5:374–379.
[19] Harlow E., Lane D. 1988Antibodies: a laboratory manual New York: Cold Spring Harbor Lab. press,.
[20] Panasyuk G., Nemazanyy I., Ovcharenko G., Lyzogubov V., Gout I., Filonenko V. 2005 Generation and characterization of monoclonal antibodies to protein kinase 2 (CK2) beta subunit Hybridoma (Larchmt) 24, N 4:206–210.
[21] Khoruzhenko A. I., Cherednyk O. V., Filonenko V. V. 2008 Subcellular localization of S6K1 and S6K2 forms of ribosomal protein S6 kinase in primary monolayer culture of rat thyrocytes Biopolym. Cell 24, N 1:35–40.
[22] Savinska L. A., Usenko V. S., Lyzogubov V. V., Pogrebnoy P. V., Patchevsky S. S., Ovsharenko G. V., Cheshuk V. S., Gout I. T., Matsuka G. Kh., Filonenko V. V. 2003 P70 S6 kinase a and b isoforms expression in cell lines and breast tumors Biopolym. Cell 19, N 1:64–70.