Biopolym. Cell. 2012; 28(4):285-287 .
Minireviews
HIV: implication in Burkitt lymphoma.
1, 2Tsfasman T. M., 1Klibi M., 1Pichugin A. M., 1Lipinski M., 1Vassetzky Y. S.
  1. Institut Gustave Roussy
    114, rue Edouard Vaillant, Villejuif, France, 94805
  2. Mechnikov Research Institute of Vaccines and Sera, RAMS
    5a, Maliy Kazenniy lane, Moscow, Russian Federation, 105064

Abstract

The risk of Burkitt lymphoma (BL) is increased in HIV-infected patients as compared to general population in Europe and in the US. This effect might be due to immune suppression and low CD4-cell counts associated with the development of AIDS. However, there is also evidence of a direct effect of HIV on B cell proliferation and differentiation, which may account for the development of B cell malignancies. We shall discuss possible mechanisms of implication of HIV in BL with a focus on the role of different viral components (Tat, Nef and gp120 proteins, viral envelope) in the c-myc/IgH translocation characteristic of BL.
Keywords: Burkitt lymphoma, lymphomagenesis, HIV-1

References

[1] Bellan C., Lazzi S., De Falco G., Nyongo A., Giordano A., Leoncini L. Burkitt's lymphoma: new insights into molecular pathogenesis J. Clin. Pathol 2003 56, N 3:188–192.
[2] Bibas M., Antinori A. EBV and HIV-related lymphoma Mediterr. J. Hematol. Infect. Dis 2009 1, N 2 e2009032.
[3] Engels E. A., Biggar R. J., Hall H. I., Cross H., Crutchfield A., Finch J. L., Grigg R., Hylton T., Pawlish K. S., McNeel T. S., Goedert J. J. Cancer risk in people infected with human immunodeficiency virus in the United States Int. J. Cancer 2008 123, N 1:187–194.
[4] Joab I., Triki H., de Saint Martin J., Perricaudet M., Nicolas J. C. Detection of anti-Epstein-Barr virus trans-activator (ZEBRA) antibodies in sera from patients with human immunodeficiency virus J. Infect. Dis 1991 163, N 1:53–56.
[5] Lennette E. T., Busch M. P., Hecht F. M., Levy J. A. Potential herpesvirus interaction during HIV type 1 primary infection AIDS Res. Hum. Retroviruses 2005 21, N 10:869–875.
[6] Engels E. A., Pfeiffer R. M., Landgren O., Moore R. D. Immunologic and virologic predictors of AIDS-related non-Hodgkin lymphoma in the highly active antiretroviral therapy era J. Acquir. Immune Defic. Syndr 2010 54, N 1:78–84.
[7] Guiguet M., Boue F., Cadranel J., Lang J. M., Rosenthal E., Costagliola D.; Clinical Epidemiology Group of the FHDH-ANRS CO4 cohort Effect of immunodeficiency, HIV viral load, and antiretroviral therapy on the risk of individual malignancies (FHDHANRS CO4): a prospective cohort study Lancet Oncol 2009 10, N 12:1152–1159.
[8] Silverberg M. J., Chao C., Leyden W. A., Xu L., Horberg M. A., Klein D., Towner W. J., Dubrow R., Quesenberry C. P. Jr., Neugebauer R. S., Abrams D. I. HIV infection, immunodeficiency, viral replication, and the risk of cancer Cancer Epidemiol. Biomarkers Prev 2011 20, N 12:2551–2559.
[9] Grogg K. L., Miller R. F., Dogan A. HIV infection and lymphoma J. Clin. Pathol 2007 60, N12:1365–1372.
[10] Janz S. Myc translocations in B cell and plasma cell neoplasms DNA Repair (Amst) 2006 5, N 9–10:1213–1224.
[11] Nikiforova M. N., Stringer J. R., Blough R., Medvedovic M., Fagin J. A., Nikiforov Y. E. Proximity of chromosomal loci that participate in radiation-induced rearrangements in human cells Science 2000 290, N 5489:138–141.
[12] Osborne C. S., Chakalova L., Mitchell J. A., Horton A., Wood A. L., Bolland D. J., Corcoran A. E., Fraser P. Myc dynamically and preferentially relocates to a transcription factory occupied by Igh PLoS Biol 2007 5, N 8 e192.
[13] Moir S., Fauci A. S. Pathogenic mechanisms of B-lymphocyte dysfunction in HIV disease J. Allergy Clin. Immunol 2008 122, N 1:12–19.
[14] Moir S., Fauci A. S. B cells in HIV infection and disease Nat. Rev. Immunol 2009 9, N 4:235–245.
[15] Shen X., Tomaras G. D. Alterations of the B-cell response by HIV1 replication Curr. HIV/AIDS Rep 2011 8, N 1:23–30.
[16] Grulich A. E., Wan X., Law M. G., Milliken S. T., Lewis C. R., Garsia R. J., Gold J., Finlayson R. J., Cooper D. A., Kaldor J. M. B-cell stimulation and prolonged immune deficiency are risk factors for non-Hodgkin's lymphoma in people with AIDS AIDS 2000 14, N 2:133–140.
[17] Fritsch L., Marechal V., Schneider V., Barthet C., Rozenbaum W., Moisan-Coppey M., Coppey J., Nicolas J. C. Production of HIV1 by human B cells infected in vitro: characterization of an EBV genome-negative B cell line chronically synthetizing a low level of HIV-1 after infection Virology 1998 244, N 2:542–551.
[18] Malaspina A., Moir S., Nickle D. C., Donoghue E. T., Ogwaro K. M., Ehler L. A., Liu S., Mican J. A., Dybul M., Chun T. W., Mullins J. I., Fauci A. S. Human immunodeficiency virus type 1 bound to B cells: relationship to virus replicating in CD4+ T cells and circulating in plasma J. Virol 2002 76, N 17:8855– 8863.
[19] Moir S., Malaspina A., Li Y., Chun T. W., Lowe T., Adelsberger J., Baseler M., Ehler L. A., Liu S., Davey R. T. Jr., Mican J. A., Fauci A. S. B cells of HIV-1-infected patients bind virions through CD21-complement interactions and transmit infectious virus to activated T cells J. Exp. Med 2000 192, N 5:637–646.
[20] Badr G., Borhis G., Treton D., Moog C., Garraud O., Richard Y. HIV type 1 glycoprotein 120 inhibits human B cell chemotaxis to CXC chemokine ligand (CXCL) 12, CC chemokine ligand (CCL) 20, and CCL21 J. Immunol 2005 175, N 1:302–310.
[21] Debaisieux S., Rayne F., Yezid H., Beaumelle B. The Ins and Outs of HIV-1 Tat Traffic 2012 13, N 3:355–363.
[22] Huang L., Li C. J., Pardee A. B. Human immunodeficiency virus type 1 TAT protein activates B lymphocytes Biochem. Biophys. Res. Commun 1997 237, N 2:461–464.
[23] Lefevre E. A., Krzysiek R., Loret E. P., Galanaud P., Richard Y. Cutting edge: HIV-1 Tat protein differentially modulates the B cell response of naive, memory, and germinal center B cells J. Immunol 1999 163, N 3:1119–1122.
[24] Kundu R. K., Sangiorgi F., Wu L.Y., Pattengale P. K., Hinton D. R., Gill P. S., Maxson R. Expression of the human immunodeficiency virus-Tat gene in lymphoid tissues of transgenic mice is associated with B-cell lymphoma Blood 1999 94, N 1:275–282.
[25] Swingler S., Zhou J., Swingler C., Dauphin A., Greenough T., Jolicoeur P., Stevenson M. Evidence for a pathogenic determinant in HIV-1 Nef involved in B cell dysfunction in HIV/AIDS Cell Host Microbe 2008 4, N 1:63–76.
[26] Xu W., Santini P. A., Sullivan J. S., He B., Shan M., Ball S. C., Dyer W. B., Ketas T. J., Chadburn A., Cohen-Gould L., Knowles D. M., Chiu A., Sanders R. W., Chen K., Cerutti A. HIV-1 evades virus-specific IgG2 and IgA responses by targeting systemic and intestinal B cells via long-range intercellular conduits Nat. Immunol 2009 10, N 9:1008–1017.
[27] Qiao X., He B., Chiu A., Knowles D. M., Chadburn A., Cerutti A. Human immunodeficiency virus 1 Nef suppresses CD40-dependent immunoglobulin class switching in bystander B cells Nat. Immunol 2006 7, N 3:302–310.