Biopolym. Cell. 2012; 28(4):281-284 .
Minireviews
The SEA complex – the beginning
1Algret R., 1Dokudovskaya S. S.
  1. Institut Gustave Roussy
    114, rue Edouard Vaillant, Villejuif, France, 94805

Abstract

The presence of distinctive internal membrane compartments, dynamically connected via selective transport pathways, is a hallmark of eukaryotic cells. Many of the proteins required for formation and maintenance of these compartments share an evolutionary history. We have recently identified a new conserved protein complex – the SEA complex – that possesses proteins with structural characteristics similar to the membrane coating complexes such as the nuclear pore complex (NPC), the COPII vesicle coating complex and HOPS/CORVET tethering complexes. The SEA complex in yeast is dynamically associated to the vacuole. The data on the function of the SEA complex remain extremely limited. Here we will discuss a possible role of the SEA complex based on the data from genetic assays and a number of functional studies in both yeast and other eukaryotes.
Keywords: Saccharomyces cerevisiae, the SEA complex, vacuoles

References

[1] Dokudovskaya S., Waharte F., Schlessinger A., Pieper U., Devos D. P., Cristea I. M., Williams R., Salamero J., Chait B. T., Sali A., Field M. C., Rout M. P., Dargemont C. A conserved coatomer-related complex containing Sec13 and Seh1 dynamically associates with the vacuole in Saccharomyces cerevisiae Mol. Cell. Proteomics 2011 10, N 6. M110.006478.
[2] Schroder B., Wrocklage C., Pan C., Jager R., Kosters B., Schafer H., Elsasser H. P., Mann M., Hasilik A. Integral and associated lysosomal membrane proteins Traffic 2007 8, N 12:1676–1686.
[3] Neklesa T. K., Davis R. W. A genome-wide screen for regulators of TORC1 in response to amino acid starvation reveals a conserved Npr2/3 complex PLoS Genet 2009 5, N 6 e1000515.
[4] Graef M., Nunnari J. Mitochondria regulate autophagy by conserved signalling pathways EMBO J 2011 30, N 11:2101–2114.
[5] Wu X., Tu B. P. Selective regulation of autophagy by the Iml1Npr2-Npr3 complex in the absence of nitrogen starvation Mol. Biol. Cell 2011 22, N 21:4124–4133.
[6] Costanzo M., Baryshnikova A., Bellay J., Kim Y., Spear E. D., Sevier C. S., Ding H., Koh J. L., Toufighi K., Mostafavi S., Prinz J., St Onge R. P., VanderSluis B., Makhnevych T., Vizeacoumar F. J., Alizadeh S., Bahr S., Brost R. L., Chen Y., Cokol M., Deshpande R., Li Z., Lin Z. Y., Liang W., Marback M., Paw J., San Luis B. J., Shuteriqi E., Tong A. H., van Dyk N., Wallace I. M., Whitney J. A., Weirauch M. T., Zhong G., Zhu H., Houry W. A., Brudno M., Ragibizadeh S., Papp B., Pal C., Roth F. P., Giaever G., Nislow C., Troyanskaya O. G., Bussey H., Bader G. D., Gingras A. C., Morris Q. D., Kim P. M., Kaiser C. A., Myers C. L., Andrews B. J., Boone C. The genetic landscape of a cell Science 2010 327, N 5964:425–431.
[7] Hillenmeyer M. E., Fung E., Wildenhain J., Pierce S. E., Hoon S., Lee W., Proctor M., St Onge R. P., Tyers M., Koller D., Altman R. B., Davis R. W., Nislow C., Giaever G. The chemical genomic portrait of yeast: uncovering a phenotype for all genes Science 2008 320, N 5874:362–365.
[8] Tong A. H., Lesage G., Bader G. D., Ding H., Xu H., Xin X., Young J., Berriz G. F., Brost R. L., Chang M., Chen Y., Cheng X., Chua G., Friesen H., Goldberg D. S., Haynes J., Humphries C., He G., Hussein S., Ke L., Krogan N., Li Z., Levinson J. N., Lu H., Menard P., Munyana C., Parsons A. B., Ryan O., Tonikian R., Roberts T., Sdicu A. M., Shapiro J., Sheikh B., Suter B., Wong S. L., Zhang L. V., Zhu H., Burd C. G., Munro S., Sander C., Rine J., Greenblatt J., Peter M., Bretscher A., Bell G., Roth F. P., Brown G. W., Andrews B., Bussey H., Boone C. Global mapping of the yeast genetic interaction network Science 2004 303, N 5659:808–813.
[9] Godard P., Urrestarazu A., Vissers S., Kontos K., Bontempi G., van Helden J., Andre B. Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae Mol. Cell. Biol 2007 27, N 8:3065–3086.
[10] Natarajan K., Meyer M. R., Jackson B. M., Slade D., Roberts C., Hinnebusch A. G., Marton M. J. Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast Mol. Cell. Biol 2001 21, N 13:4347–4368.
[11] Schuldiner O., Yanover C., Benvenisty N. Computer analysis of the entire budding yeast genome for putative targets of the GCN4 transcription factor Curr. Genet 1998 33, N 1:16–20.
[12] Iida T., Lilly M. A. missing oocyte encodes a highly conserved nuclear protein required for the maintenance of the meiotic cycle and oocyte identity in Drosophila Development 2004 131, N 5:1029–1039.
[13] Senger S., Csokmay J., Akbar T., Jones T. I., Sengupta P., Lilly M. A. The nucleoporin Seh1 forms a complex with Mio and serves an essential tissue-specific function in Drosophila oogenesis Development 2011 138, N 10:2133–2142.
[14] Platani M., Santarella-Mellwig R., Posch M., Walczak R., Swedlow J. R., Mattaj I. W. The Nup107-160 nucleoporin complex promotes mitotic events via control of the localization state of the chromosome passenger complex Mol. Biol. Cell 2009 20, N 24:5260–5275.
[15] Lee M. H., Lee S. H., Kim H., Jin J. B., Kim D. H., Hwang I. A WD40 repeat protein, Arabidopsis Sec13 homolog 1, may play a role in vacuolar trafficking by controlling the membrane association of AtDRP2A Mol. Cells 2006 22, N 2:210–219.
[16] Lerman M. I., Minna J. D. The 630-kb lung cancer homozygous deletion region on human chromosome 3p21.3: identification and evaluation of the resident candidate tumor suppressor genes. The International Lung Cancer Chromosome 3p21.3 Tumor Suppressor Gene Consortium Cancer Res 2000 60, N 21:6116–6133.
[17] Ueda K., Kawashima H., Ohtani S., Deng W. G., Ravoori M., Bankson J., Gao B., Girard L., Minna J. D., Roth J. A., Kundra V., Ji L. The 3p21.3 tumor suppressor NPRL2 plays an important role in cisplatin-induced resistance in human non-small-cell lung cancer cells Cancer Res 2006 66, N 19:9682–9690.
[18] Schenk P. W., Brok M., Boersma A. W., Brandsma J. A., Den Dulk H., Burger H., Stoter G., Brouwer J., Nooter K. Anticancer drug resistance induced by disruption of the Saccharomyces cerevisiae NPR2 gene: a novel component involved in cisplatinand doxorubicin-provoked cell kill Mol. Pharmacol 2003 64, N 2:259–268.
[19] Kurata A., Katayama R., Watanabe T., Tsuruo T., Fujita N. TUSC4/ NPRL2, a novel PDK1-interacting protein, inhibits PDK1 tyrosine phosphorylation and its downstream signaling Cancer Sci 2008 99, N 9:1827–1834.
[20] Lunardi A., Chiacchiera F., D'Este E., Carotti M., Dal Ferro M., Di Minin G., Del Sal G., Collavin L. The evolutionary conserved gene C16orf35 encodes a nucleo-cytoplasmic protein that interacts with p73 Biochem. Biophys. Res. Commun 2009 388, N 2:428–433.