Biopolym. Cell. 2012; 28(4):267-280 .
Reviews
Evolutionary karyotypic theory of cancer versus conventional cancer gene mutation theory
- State Key Laboratory of Molecular and Cellular Biology
Institute of Molecular Biology and Genetics, NAS of Ukraine
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
Abstract
For decades the conventional gene mutation cancer theory has been postulating that cancer is a genetic disease considered as a result of deterministic sequential accumulation of mutations in the handful of «driver» cancer genes occurring in a continuous linear pattern of cancer progression. However, in contrast to this postulate, recent whole genome and exome sequencing studies of primary tumor bulk and metastases or separate regions withing the same sample have revealed a large number of stochastic gene mutations for each individual with the same cancer type and significant intratumoral genetic heterogeneity with «branched evolutionary tumor growth» or «punctuated clonal evolution without observable intermediate branching» or «no dominant clones in the cancer tissue». Meanwhile, the stochastic karyotypic variation and intratumor heterogeneity are recognized to be the driving force of tumor evolution and major factors in determining relapse with acquired drug resistance. The karyotype evolution/chromosome instability and the resulting magnitude of intratumor heterogeneity significantly correlate with tumorigenic potential of cells, tumor disease progression from precancerous lesions to malignant tumors and metastases, correlate with patient survival, treatment sensitivity, and the risk of acquired resistance. Here, we discuss importance of the evolutionary karyotypic theory in understanding the cancer biology and mechanisms of tumor drug resistance.
Keywords: tumor evolution, karyotype, chromosome instability, intratumor heterogeneity, cancer gene, drug resistance
Full text: (PDF, in English)
References
[2]
Caulin A. F., Maley C. C. Peto's Paradox: evolution's prescription for cancer prevention Trends Ecol. Evol 2011 26, N 4:175–182.
[3]
Jemal A., Bray F., Center M. M., Ferlay J., Ward E., Forman D. Global cancer statistics CA Cancer J. Clin 2011 61, N 2:69–90.
[4]
Bourke M. G., Salwa S., Harrington K. J., Kucharczyk M. J., Forde P. F., de Kruijf M., Soden D., Tangney M., Collins J. K., O'Sullivan G. C. The emerging role of viruses in the treatment of solid tumours Cancer Treat. Rev 2011 37, N 8:618–632.
[5]
Reeder-Hayes K. E., Carey L. A., Sikov W. M. Clinical trials in triple negative breast cancer Breast Dis 2010 32, N 1–2:123–136.
[6]
Torti D., Trusolino L. Oncogene addiction as a foundational rationale for targeted anti-cancer therapy: promises and perils EMBO Mol. Med 2011 3, N 11:623–636.
[7]
Plate J. Clinical trials of vaccines for immunotherapy in pancreatic cancer Expert Rev. Vaccines 2011 10, N 6:825–836.
[8]
Brookman-May S., Burger M., Wieland W. F., Rossler W., May M., Denzinger S. Vaccination therapy in renal cell carcinoma: current position and future options in metastatic and localized disease Expert Rev. Vaccines 2011 10, N 6:837–852.
[9]
Leffers N., Daemen T., Boezen H. M., Melief K. J., Nijman H. W. Vaccine-based clinical trials in ovarian cancer Expert Rev. Vaccines 2011 10, N 6:775–784.
[10]
Santarpia M., Altavilla G., Salazar M. F., Magri I., Pettineo G., Benecchi S., Rosell R. Tyrosine kinase inhibitors for non-smallcell lung cancer: finding patients who will be responsive Expert Rev. Respir. Med 2011 5, N 3:413–424.
[11]
Yoong J., Michael M., Leong T. Targeted therapies for gastric cancer: current status Drugs 2011 71, N 11:1367–1384.
[12]
Blank C. U., Hooijkaas A. I., Haanen J. B., Schumacher T. N. Combination of targeted therapy and immunotherapy in melanoma Cancer Immunol. Immunother 2011 60, N 10:1359–1371.
[13]
Coppin C., Kollmannsberger C., Le L., Porzsolt F., Wilt T. J. Targeted therapy for advanced renal cell cancer (RCC): a Cochrane systematic review of published randomised trials BJU Int 2011 108, N 10:1556–1563.
[14]
Banerjee S., Kaye S. The role of targeted therapy in ovarian cancer Eur. J. Cancer 2011 47, Suppl 3 S116–130.
[15]
Higgins M. J., Baselga J. Targeted therapies for breast cancer J. Clin. Invest 2011 121, N 10:3797–3803.
[16]
Pujade-Lauraine E., Alexandre J. Update of randomized trials in recurrent disease Ann. Oncol 2011 22, Suppl. 8:viii61– viii64.
[17]
Leung M., Rosen D., Fields S., Cesano A., Budman D. R. Poly (ADP-ribose) polymerase-1 inhibition: preclinical and clinical development of synthetic lethality Mol. Med 2011 17, N 7– 8:854–862.
[18]
Jansen M. H., van Vuurden D. G., Vandertop W. P., Kaspers G. J. Diffuse intrinsic pontine gliomas: a systematic update on clinical trials and biology Cancer Treat. Rev 2012 38, N 1:27–35.
[19]
Perez-Lorenzo R., Zheng B. Targeted inhibition of BRAF kinase: opportunities and challenges for therapeutics in melanoma Biosci. Rep 2012 32, N 1:25–33.
[20]
Singer E. A., Gupta G. N., Srinivasan R. Targeted therapeutic strategies for the management of renal cell carcinoma Curr. Opin. Oncol 2012 24, N 3:284–290.
[21]
Mackey J. R., Kerbel R. S., Gelmon K. A., McLeod D. M., Chia S. K., Rayson D., Verma S., Collins L. L., Paterson A. H., Robidoux A., Pritchard K. I. Controlling angiogenesis in breast cancer: A systematic review of anti-angiogenic trials Cancer Treat. Rev 2012 38, N 6:637–688
[22]
Chan S. L., Yeo W. Targeted therapy of hepatocellular carcinoma: present and future J. Gastroenterol. Hepatol 2012 27, N 5:862–872.
[23]
Duesberg P., Fabarius A., Hehlmann R. Aneuploidy, the primary cause of the multilateral genomic instability of neoplastic and preneoplastic cells IUBMB Life 2004 56, N 2:65–81.
[24]
Duesberg P., Li R., Fabarius A., Hehlmann R. The chromosomal basis of cancer Cell Oncol 2005 27, N 5–6:293–318.
[25]
Duesberg P., Li R., Fabarius A., Hehlmann R. Aneuploidy and cancer: from correlation to causation Contrib. Microbiol 2006 13:16–44.
[26]
Heng H. H., Stevens J. B., Liu G., Bremer S. W., Ye K. J., Reddy P. V., Wu G. S., Wang Y. A., Tainsky M. A., Ye C. J. Stochastic cancer progression driven by non-clonal chromosome aberrations J. Cell. Physiol 2006 208, N 2:461–472.
[27]
Heng H. H., Bremer S. W., Stevens J. B., Ye K. J., Liu G., Ye C. J. Genetic and epigenetic heterogeneity in cancer: a genome-centric perspective J. Cell. Physiol 2009 220, N 3:538–547.
[28]
Heng H. H., Stevens J. B., Bremer S. W., Ye K. J., Liu G., Ye C. J. The evolutionary mechanism of cancer J. Cell. Biochem 2010 109, N 6:1072–1084.
[29]
Fox E. J., Salk J. J., Loeb L. A. Cancer genome sequencing – an interim analysis Cancer Res 2009 69, N 12:4948–4950.
[31]
Syed A. S., D'Antonio M., Ciccarelli F. D. Network of Cancer Genes: a web resource to analyze duplicability, orthology and network properties of cancer genes Nucleic Acids Res 2010 38 D670–675.
[32]
Bessarabova M., Pustovalova O., Shi W., Serebriyskaya T., Ishkin A., Polyak K., Velculescu V. E., Nikolskaya T., Nikolsky Y. Functional synergies yet distinct modulators affected by genetic alterations in common human cancers Cancer Res 2011 71, N 10:3471–3481.
[33]
D'Antonio M., Pendino V., Sinha S., Ciccarelli F. D. Network of Cancer Genes (NCG 3.0): integration and analysis of genetic and network properties of cancer genes Nucleic Acids Res 2012 40 D978–983.
[34]
Loeb L. A. Human cancers express mutator phenotypes: origin, consequences and targeting Nat. Rev. Cancer 2011 11, N 6:450–457.
[35]
Kan Z., Jaiswal B. S., Stinson J., Janakiraman V., Bhatt D., Stern H. M., Yue P., Haverty P. M., Bourgon R., Zheng J., Moorhead M., Chaudhuri S., Tomsho L. P., Peters B. A., Pujara K., Cordes S., Davis D. P., Carlton V. E., Yuan W., Li L., Wang W., Eigenbrot C., Kaminker J. S., Eberhard D. A., Waring P., Schuster S. C., Modrusan Z., Zhang Z., Stokoe D., de Sauvage F. J., Faham M., Seshagiri S. Diverse somatic mutation patterns and pathway alterations in human cancers Nature 2010 466, N 7308:869–873.
[36]
Futreal P. A., Coin L., Marshall M., Down T., Hubbard T., Wooster R., Rahman N., Stratton M. R. A census of human cancer genes Nat. Rev. Cancer 2004 4, N 3:177–183.
[37]
Xu X., Hou Y., Yin X., Bao L., Tang A., Song L., Li F., Tsang S., Wu K., Wu H., He W., Zeng L., Xing M., Wu R., Jiang H., Liu X., Cao D., Guo G., Hu X., Gui Y., Li Z., Xie W., Sun X., Shi M., Cai Z., Wang B., Zhong M., Li J., Lu Z., Gu N., Zhang X., Goodman L., Bolund L., Wang J., Yang H., Kristiansen K., Dean M., Li Y., Wang J. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor Cell 2012 148, N 5:886–895.
[38]
Navin N., Kendall J., Troge J., Andrews P., Rodgers L., McIndoo J., Cook K., Stepansky A., Levy D., Esposito D., Muthuswamy L., Krasnitz A., McCombie W. R., Hicks J., Wigler M. Tumour evolution inferred by single-cell sequencing Nature 2011 472, N 7341:90–94.
[39]
Gerlinger M., Rowan A. J., Horswell S., Larkin J., Endesfelder D., Gronroos E., Martinez P., Matthews N., Stewart A., Tarpey P., Varela I., Phillimore B., Begum S., McDonald N. Q., Butler A., Jones D., Raine K., Latimer C., Santos C. R., Nohadani M., Eklund A. C., Spencer-Dene B., Clark G., Pickering L., Stamp G., Gore M., Szallasi Z., Downward J., Futreal P. A., Swanton C. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing N. Engl. J. Med 2012 366, N 10:883–892.
[40]
Knight S. J., Yau C., Clifford R., Timbs A. T., Akha E. S., Dreau H. M., Burns A., Ciria C., Oscier D. G., Pettitt A. R., Dutton S., Holmes C. C., Taylor J., Cazier J. B., Schuh A. Quantification of subclonal distributions of recurrent genomic aberrations in paired pre-treatment and relapse samples from patients with B-cell chronic lymphocytic leukemia Leukemia. 2012;26(7):1564-7
[41]
Braggio E., Kay N. E., Vanwier S., Tschumper R. C., Smoley S., Eckel-Passow J. E., Sassoon T., Barrett M., Van Dyke D. L., Byrd J. C., Jelinek D. F., Shanafelt T. D., Fonseca R. Longitudinal genome wide analysis of patients with chronic lymphocytic leukemia reveals complex evolution of clonal architecture at disease progression and at the time of relapse Leukemia 2012.
[42]
Yachida S., Jones S., Bozic I., Antal T., Leary R., Fu B., Kamiyama M., Hruban R. H., Eshleman J. R., Nowak M. A., Velculescu V. E., Kinzler K. W., Vogelstein B., Iacobuzio-Donahue C. A. Distant metastasis occurs late during the genetic evolution of pancreatic cancer Nature 2010 467, N 7319:1114–1117.
[43]
Lindberg J., Klevebring D., Liu W., Neiman M., Xu J., Wiklund P., Wiklund F., Mills I. G., Egevad L., Gronberg H. Exome sequencing of prostate cancer supports the hypothesis of independent tumour origins Eur. Urol Volume 63, Issue 2, February 2013, Pages 347–353
[44]
Bartholdi M. F., Ray F. A., Cram L. S., Kraemer P. M. Karyotype instability of Chinese hamster cells during in vivo tumor progression Somat. Cell. Mol. Genet 1987 13, N 1:1–10.
[45]
Miura M., Miura Y., Padilla-Nash H. M., Molinolo A. A., Fu B., Patel V., Seo B. M., Sonoyama W., Zheng J. J., Baker C. C., Chen W., Ried T., Shi S. Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation Stem Cells 2006 24, N 4:1095–1103.
[46]
Ragel B. T., Couldwell W. T., Gillespie D. L., Wendland M. M., Whang K., Jensen R. L. A comparison of the cell lines used in meningioma research Surg. Neurol 2008 70, N 3:295–307.
[47]
Marella N. V., Malyavantham K. S., Wang J., Matsui S., Liang P., Berezney R. Cytogenetic and cDNA microarray expression analysis of MCF10 human breast cancer progression cell lines Cancer Res 2009 69, N 14:5946–5953.
[48]
Blum B., Benvenisty N. The tumorigenicity of diploid and aneuploid human pluripotent stem cells Cell Cycle 2009 8, N 23:3822–3830.
[49]
Sotillo R., Schvartzman J. M., Socci N. D., Benezra R. Mad2-induced chromosome instability leads to lung tumour relapse after oncogene withdrawal Nature 2010 464, N 7287:436–440.
[50]
Zitzelsberger H., Engert D., Walch A., Kulka U., Aubele M., Hofler H., Bauchinger M., Werner M. Chromosomal changes during development and progression of prostate adenocarcinomas Br. J. Cancer 2001 84, N 2:202–208.
[51]
Veltman J. A., van Weert I., Aubele M., Bot F. J., Ramaekers F. C., Manni J. J., Hopman A. H. Specific steps in aneuploidization correlate with loss of heterozygosity of 9p21, 17p13 and 18q21 in the progression of pre-malignant laryngeal lesions Int. J. Cancer 2001 91, N 2:193–199.
[52]
Aubele M., Auer G., Braselmann H., Nahrig J., Zitzelsberger H., Quintanilla-Martinez L., Smida J., Walch A., Hofler H., Werner M. Chromosomal imbalances are associated with metastasis-free survival in breast cancer patients Anal. Cell. Pathol 2002 24, N 2–3:77–87.
[53]
Pihan G. A., Wallace J., Zhou Y., Doxsey S. J. Centrosome abnormalities and chromosome instability occur together in preinvasive carcinomas Cancer Res 2003 63, N 6:1398– 1404.
[54]
Giehl M., Fabarius A., Frank O., Hochhaus A., Hafner M., Hehlmann R., Seifarth W. Centrosome aberrations in chronic myeloid leukemia correlate with stage of disease and chromosomal instability Leukemia 2005 19, N 7:1192–1197.
[55]
Gorgoulis V. G., Vassiliou L. V., Karakaidos P., Zacharatos P., Kotsinas A., Liloglou T., Venere M., Ditullio R. A. Jr., Kastrinakis N. G., Levy B., Kletsas D., Yoneta A., Herlyn M., Kittas C., Halazonetis T. D. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions Nature 2005 434, N 7035:907–913.
[56]
Jonkers Y. M., Claessen S. M., Perren A., Schmid S., Komminoth P., Verhofstad A. A., Hofland L. J., de Krijger R. R., Slootweg P. J., Ramaekers F. C., Speel E. J. Chromosomal instability predicts metastatic disease in patients with insulinomas Endocr. Relat. Cancer 2005 12, N 2:435–447.
[57]
Li X., Galipeau P. C., Sanchez C. A., Blount P. L., Maley C. C., Arnaudo J., Peiffer D. A., Pokholok D., Gunderson K. L., Reid B. J. Single nucleotide polymorphism-based genome-wide chromosome copy change, loss of heterozygosity, and aneuploidy in Barrett's esophagus neoplastic progression Cancer. Prev. Res. (Phila) 2008 1, N 6:413–423.
[58]
Loncarevic I. F., Hering A., Posorski N., Linden T., Hoyer H., Bucsky P. Number of genomic imbalances correlates with the overall survival for adrenocortical cancer in childhood Pediatr. Blood Cancer 2008 51, N 3:356–362.
[59]
Paulson T. G., Maley C. C., Li X., Li H., Sanchez C. A., Chao D. L., Odze R. D., Vaughan T. L., Blount P. L., Reid B. J. Chromosomal instability and copy number alterations in Barrett's esophagus and esophageal adenocarcinoma Clin. Cancer Res 2009 15, N 10:3305–3314.
[60]
Sheffer M., Bacolod M. D., Zuk O., Giardina S. F., Pincas H., Barany F., Paty P. B., Gerald W. L., Notterman D. A., Domany E. Association of survival and disease progression with chromosomal instability: a genomic exploration of colorectal cancer Proc. Natl Acad. Sci. USA 2009 106, N 17:7131–7136.
[61]
Heilig C. E., Loffler H., Mahlknecht U., Janssen J. W., Ho A. D., Jauch A., Kramer A. Chromosomal instability correlates with poor outcome in patients with myelodysplastic syndromes irrespectively of the cytogenetic risk group J. Cell Mol. Med 2010 14, N 4:895–902.
[62]
Roylance R., Endesfelder D., Gorman P., Burrell R. A., Sander J., Tomlinson I., Hanby A. M., Speirs V., Richardson A. L., Birkbak N. J., Eklund A. C., Downward J., Kschischo M., Szallasi Z., Swanton C. Relationship of extreme chromosomal instability with long-term survival in a retrospective analysis of primary breast cancer Cancer Epidemiol. Biomarkers Prev 2011 20, N 10:2183–2194.
[63]
Endesfelder D., McGranahan N., Birkbak N. J., Szallasi Z., Kschischo M., Graham T. A., Swanton C. A breast cancer meta-analysis of two expression measures of chromosomal instability reveals a relationship with younger age at diagnosis and high risk histopathological variables Oncotarget 2011 2, N 7:529– 537.
[64]
Smid M., Hoes M., Sieuwerts A. M., Sleijfer S., Zhang Y., Wang Y., Foekens J. A., Martens J. W. Patterns and incidence of chromosomal instability and their prognostic relevance in breast cancer subtypes Breast Cancer Res. Treat 2011 128, N 1:23–30.
[65]
Lagarde P., Perot G., Kauffmann A., Brulard C., Dapremont V., Hostein I., Neuville A., Wozniak A., Sciot R., Schoffski P., Aurias A., Coindre J. M., Debiec-Rychter M., Chibon F. Mitotic checkpoints and chromosome instability are strong predictors of clinical outcome in gastrointestinal stromal tumors Clin. Cancer Res 2011 18, N 3:826–838.
[66]
Bakhoum S. F., Danilova O. V., Kaur P., Levy N. B., Compton D. A. Chromosomal instability substantiates poor prognosis in patients with diffuse large B-cell lymphoma Clin. Cancer Res 2011 17, N 24:7704–7711.
[67]
Ylipaa A., Hunt K. K., Yang J., Lazar A. J., Torres K. E., Lev D. C., Nykter M., Pollock R. E., Trent J., Zhang W. Integrative genomic characterization and a genomic staging system for gastrointestinal stromal tumors Cancer 2011 117, N 2:380–389.
[68]
Hata H., Matsuzaki H., Yoshida M., Sonoki T., Kuribayashi N., Nagasaki A., Kimura T., Harada N., Takatsuki K. Hyperdiploid myeloma cell as an indicator of poor prognosis and drug refractoriness Int. J. Hematol 1997 66, N 2:219–226.
[69]
Zwaan C. M., Kaspers G. J., Pieters R., Hahlen K., Huismans D. R., Zimmermann M., Harbott J., Slater R. M., Creutzig U., Veerman A. J. Cellular drug resistance in childhood acute myeloid leukemia is related to chromosomal abnormalities Blood 2002 100, N 9:3352–3360.
[70]
Weise A., Liehr T., Efferth T., Kuechler A., Gebhart E. Comparative M-FISH and CGH analyses in sensitive and drug-resistant human T-cell acute leukemia cell lines Cytogenet. Genome Res 2002 98, N 2–3:118–125.
[71]
Hattinger C. M., Reverter-Branchat G., Remondini D., Castellani G. C., Benini S., Pasello M., Manara M. C., Scotlandi K., Picci P., Serra M. Genomic imbalances associated with methotrexate resistance in human osteosarcoma cell lines detected by comparative genomic hybridization-based techniques Eur. J. Cell. Biol 2003 82, N 9:483–493.
[72]
Akervall J., Guo X., Qian C. N., Schoumans J., Leeser B., Kort E., Cole A., Resau J., Bradford C., Carey T., Wennerberg J., Anderson H., Tennvall J., Teh B. T. Genetic and expression profiles of squamous cell carcinoma of the head and neck correlate with cisplatin sensitivity and resistance in cell lines and patients Clin. Cancer Res 2004 10, N 24:8204–8213.
[73]
Duesberg P., Li R., Sachs R., Fabarius A., Upender M. B., Hehlmann R. Cancer drug resistance: the central role of the karyotype Drug Resist. Updat 2007 10, N 1–2:51–58.
[74]
Bouchet B. P., Bertholon J., Falette N., Audoynaud C., Lamblot C., Puisieux A., Galmarini C. M. Paclitaxel resistance in untransformed human mammary epithelial cells is associated with an aneuploidy-prone phenotype Br. J. Cancer 2007 97, N 9:1218–1224.
[75]
Davis E., Teng H., Bilican B., Parker M. I., Liu B., Carriera S., Goding C. R., Prince S. Ectopic Tbx2 expression results in polyploidy and cisplatin resistance Oncogene 2008 27, N 7:976–984.
[76]
Nicholson J. M., Duesberg P. On the karyotypic origin and evolution of cancer cells Cancer Genet. Cytogenet 2009 194, N 2:96–110.
[77]
Swanton C., Nicke B., Schuett M., Eklund A. C., Ng C., Li Q., Hardcastle T., Lee A., Roy R., East P., Kschischo M., Endesfelder D., Wylie P., Kim S. N., Chen J. G., Howell M., Ried T., Habermann J. K., Auer G., Brenton J. D., Szallasi Z., Downward J. Chromosomal instability determines taxane response Proc. Natl Acad. Sci. USA 2009 106, N 21:8671–8676.
[78]
McClelland S. E., Burrell R. A., Swanton C. Chromosomal instability: a composite phenotype that influences sensitivity to chemotherapy Cell Cycle 2009 8, N 20:3262–3266.
[79]
Gerlinger M., Swanton C. How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine Br. J. Cancer 2010 103, N 8:1139–1143.
[80]
Klein A., Li N., Nicholson J. M., McCormack A. A., Graessmann A., Duesberg P. Transgenic oncogenes induce oncogene-independent cancers with individual karyotypes and phenotypes Cancer Genet. Cytogenet 2010 200, N 2:79–99.
[81]
Bacher U., Haferlach T., Alpermann T., Zenger M., Kroger N., Beelen D. W., Kern W., Schnittger S., Haferlach C. Comparison of cytogenetic clonal evolution patterns following allogeneic hematopoietic transplantation versus conventional treatment in patients at relapse of AML Biol. Blood Marrow Transplant 2010 16, N 12:1649–1657.
[82]
Cooke S. L., Ng C. K., Melnyk N., Garcia M. J., Hardcastle T., Temple J., Langdon S., Huntsman D., Brenton J. D. Genomic analysis of genetic heterogeneity and evolution in high-grade serous ovarian carcinoma Oncogene 2010 29, N 35:4905–4913.
[83]
Cooke S. L., Temple J., Macarthur S., Zahra M. A., Tan L. T., Crawford R. A., Ng C. K., Jimenez-Linan M., Sala E., Brenton J. D. Intra-tumour genetic heterogeneity and poor chemoradiotherapy response in cervical cancer Br. J. Cancer 2011 104, N 2:361–368.
[84]
Lee A. J., Endesfelder D., Rowan A. J., Walther A., Birkbak N. J., Futreal P. A., Downward J., Szallasi Z., Tomlinson I. P., Howell M., Kschischo M., Swanton C. Chromosomal instability confers intrinsic multidrug resistance Cancer Res 2011 71, N 5:1858–1870.
[85]
Morgan W. F., Murnane J. P. A role for genomic instability in cellular radioresistance? Cancer Metastasis Rev 1995 14, N 1:49–58.
[86]
Limoli C. L., Corcoran J. J., Jordan R., Morgan W. F., Schwartz J. L. A role for chromosomal instability in the development of and selection for radioresistant cell variants Br. J. Cancer 2001 84, N 4:489–492.
[87]
Fernandez-L. A., Squatrito M., Northcott P., Awan A., Holland E. C., Taylor M. D., Nahle Z., Kenney A. M. Oncogenic YAP promotes radioresistance and genomic instability in medulloblastoma through IGF2-mediated Akt activation Oncogene 2011 31, N 15:1923–1937.
[88]
Birkbak N. J., Eklund A. C., Li Q., McClelland S. E., Endesfelder D., Tan P., Tan I. B., Richardson A. L., Szallasi Z., Swanton C. Paradoxical relationship between chromosomal instability and survival outcome in cancer Cancer Res 2011 71, N 10:3447–3452.
[89]
Weaver B. A., Silk A. D., Cleveland D. W. Low rates of aneuploidy promote tumorigenesis while high rates of aneuploidy cause cell death and tumor suppression Cell. Oncol 2008 30, N 5:453.
[90]
Li L., McCormack A. A., Nicholson J. M., Fabarius A., Hehlmann R., Sachs R. K., Duesberg P. H. Cancer-causing karyotypes: chromosomal equilibria between destabilizing aneuploidy and stabilizing selection for oncogenic function Cancer Genet. Cytogenet 2009 188, N 1:1–25.
[91]
Weaver B. A., Cleveland D. W. The aneuploidy paradox in cell growth and tumorigenesis Cancer Cell 2008 14, N 6:431–433.
[92]
Weaver B. A., Cleveland D. W. The role of aneuploidy in promoting and suppressing tumors J. Cell Biol 2009 185, N 6:935–937.
[93]
Sheltzer J. M., Amon A. The aneuploidy paradox: costs and benefits of an incorrect karyotype Trends Genet 2011 27, N 11:446–453.
[94]
Nobusawa S., Lachuer J., Wierinckx A., Kim Y. H., Huang J., Legras C., Kleihues P., Ohgaki H. Intratumoral patterns of genomic imbalance in glioblastomas Brain Pathol 2010 20, N 5:936–944.
[95]
Almendro V., Fuster G. Heterogeneity of breast cancer: etiology and clinical relevance Clin. Transl. Oncol 2011 13, N 11:767–773.
[96]
Ruiz C., Lenkiewicz E., Evers L., Holley T., Robeson A., Kiefer J., Demeure M. J., Hollingsworth M. A., Shen M., Prunkard D., Rabinovitch P. S., Zellweger T., Mousses S., Trent J. M., Carpten J. D., Bubendorf L., Von Hoff D., Barrett M. T. Advancing a clinically relevant perspective of the clonal nature of cancer Proc. Natl Acad. Sci. USA 2011 108, N 29:12054–12059.
[97]
Siegmund K. D., Marjoram P., Tavare S., Shibata D. High DNA methylation pattern intratumoral diversity implies weak selection in many human colorectal cancers PLoS One 2011 6, N 6 e21657.
[98]
Malek J. A., Mery E., Mahmoud Y. A., Al-Azwani E. K., Roger L., Huang R., Jouve E., Lis R., Thiery J. P., Querleu D., Rafii A. Copy number variation analysis of matched ovarian primary tumors and peritoneal metastasis PLoS One 2011 6, N 12 e28561.
[99]
Snuderl M., Fazlollahi L., Le L. P., Nitta M., Zhelyazkova B. H., Davidson C. J., Akhavanfard S., Cahill D. P., Aldape K. D., Betensky R. A., Louis D. N., Iafrate A.J. Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma Cancer Cell 2011 20, N 6:810–817.
[100]
Hogan L. E., Meyer J. A., Yang J., Wang J., Wong N., Yang W., Condos G., Hunger S. P., Raetz E., Saffery R., Relling M. V., Bhojwani D., Morrison D. J., Carroll W. L. Integrated genomic analysis of relapsed childhood acute lymphoblastic leukemia reveals therapeutic strategies Blood 2011 118, N 19:5218–5226.
[101]
Buob D., Fauvel H., Buisine M. P., Truant S., Mariette C., Porchet N., Wacrenier A., Copin M. C., Leteurtre E. The complex intratumoral heterogeneity of colon cancer highlighted by laser microdissection Dig. Dis. Sci 2011 57, N 5:1271–1280.
[102]
Korshunov A., Remke M., Kool M., Hielscher T., Northcott P. A., Williamson D., Pfaff E., Witt H., Jones D. T., Ryzhova M., Cho Y. J., Wittmann A., Benner A., Weiss W. A., von Deimling A., Scheurlen W., Kulozik A. E., Clifford S. C., Peter Collins V., Westermann F., Taylor M. D., Lichter P., Pfister S. M. Biological and clinical heterogeneity of MYCN-amplified medulloblastoma Acta Neuropathol 2012 123, N 4:515–527.
[103]
Samuel N., Hudson T. J. The molecular and cellular heterogeneity of pancreatic ductal adenocarcinoma Nat. Rev. Gastroenterol. Hepatol 2011 9, N 2:77–87.
[104]
Anderson K., Lutz C., van Delft F. W., Bateman C. M., Guo Y., Colman S. M., Kempski H., Moorman A. V., Titley I., Swansbury J., Kearney L., Enver T., Greaves M. Genetic variegation of clonal architecture and propagating cells in leukaemia Nature 2011 469, N 7330:356–361.
[105]
Gunnarsson R., Mansouri L., Isaksson A., Goransson H., Cahill N., Jansson M., Rasmussen M., Lundin J., Norin S., Buhl A. M., Smedby K. E., Hjalgrim H., Karlsson K., Jurlander J., Geisler C., Juliusson G., Rosenquist R. Array-based genomic screening at diagnosis and during follow-up in chronic lymphocytic leukemia Haematologica 2011 96, N 8:1161–1169.
[106]
Kloosterman W. P., Hoogstraat M., Paling O., Tavakoli-Yaraki M., Renkens I., Vermaat J. S., van Roosmalen M. J., van Lieshout S., Nijman I. J., Roessingh W., van't Slot R., van de Belt J., Guryev V., Koudijs M., Voest E., Cuppen E. Chromothripsis is a common mechanism driving genomic rearrangements in primary and metastatic colorectal cancer Genome Biol 2011 12, N 10 R103.
[107]
Russnes H. G., Navin N., Hicks J., Borresen-Dale A. L. Insight into the heterogeneity of breast cancer through next-generation sequencing J. Clin. Invest 2011 121, N 10:3810–3818.
[108]
Seol H., Lee H. J., Choi Y., Lee H. E., Kim Y. J., Kim J. H., Kang E., Kim S. W., Park S. Y. Intratumoral heterogeneity of HER2 gene amplification in breast cancer: its clinicopathological significance. Mod Pathol. 2012;25(7):938-48.
[109]
Wu X., Northcott P. A., Dubuc A., Dupuy A. J., Shih D. J., Witt H., Croul S., Bouffet E., Fults D. W., Eberhart C. G., Garzia L., Van Meter T., Zagzag D., Jabado N., Schwartzentruber J., Majewski J., Scheetz T. E., Pfister S. M., Korshunov A., Li X. N., Scherer S. W., Cho Y. J., Akagi K., MacDonald T. J., Koster J., McCabe M. G., Sarver A. L., Collins V. P., Weiss W. A., Largaespada D. A., Collier L. S., Taylor M. D. Clonal selection drives genetic divergence of metastatic medulloblastoma Nature 2012 482, N 7386:529–533.
[110]
Giuriato S., Felsher D. W. How cancers escape their oncogene habit Cell Cycle 2003 2, N 4:329–332.
[111]
Jonkers J., Berns A. Oncogene addiction: sometimes a temporary slavery Cancer Cell 2004 6, N 6:535–538.
[112]
Sharma S. V., Fischbach M. A., Haber D. A., Settleman J. «Oncogenic shock»: explaining oncogene addiction through differential signal attenuation Clin. Cancer Res 2006 12, N 14, Pt 2 4392s–4395s.
[113]
Sharma S. V., Settleman J. Oncogene addiction: setting the stage for molecularly targeted cancer therapy Genes Dev 2007 21, N 24:3214–3231.
[115]
McCormick F. Cancer therapy based on oncogene addiction J. Surg. Oncol 2011 103, N 6:464–467.
[116]
Yan W., Zhang W., Jiang T. Oncogene addiction in gliomas: implications for molecular targeted therapy J. Exp. Clin. Cancer Res 2011 30:58.
[118]
Fabarius A., Li R., Yerganian G., Hehlmann R., Duesberg P. Specific clones of spontaneously evolving karyotypes generate individuality of cancers Cancer Genet. Cytogenet 2008 180, N 2:89–99.
[119]
Duesberg P., Mandrioli D., McCormack A., Nicholson J. M. Is carcinogenesis a form of speciation? Cell Cycle 2011 10, N 13:2100–2114.
[120]
Duesberg P., Iacobuzio-Donahue C., Brosnan J. A., McCormack A., Mandrioli D., Chen L. Origin of metastases: Subspecies of cancers generated by intrinsic karyotypic variations Cell Cycle 2012 11, N 6:1151–1166.
[121]
Heng H. H., Liu G., Stevens J. B., Bremer S. W., Ye K. J., Ye C. J. Genetic and epigenetic heterogeneity in cancer: the ultimate challenge for drug therapy Curr. Drug Targets 2010 11, N 10:1304–1316.
[122]
Heng H. H., Stevens J. B., Bremer S. W., Liu G., Abdallah B. Y., Ye C. J. Evolutionary mechanisms and diversity in cancer Adv. Cancer Res 2011 112:217–253.
[123]
Merlo L. M., Pepper J. W., Reid B. J., Maley C. C. Cancer as an evolutionary and ecological process Nat. Rev. Cancer 2006 6, N 12:924–935.
[124]
Maley C. C., Galipeau P. C., Finley J. C., Wongsurawat V. J., Li X., Sanchez C. A., Paulson T. G., Blount P. L., Risques R. A., Rabinovitch P. S., Reid B. J. Genetic clonal diversity predicts progression to esophageal adenocarcinoma Nat. Genet 2006 38, N 4:468–473.
[126]
Lyons J. G., Lobo E., Martorana A. M., Myerscough M. R. Clonal diversity in carcinomas: its implications for tumour progression and the contribution made to it by epithelial-mesenchymal transitions Clin. Exp. Metastasis 2008 25, N 6:665–677.
[127]
Klein C. A. Parallel progression of primary tumours and metastases Nature Rev. Cancer 2009 9, N 4:302–312.
[128]
Park S. Y., Gonen M., Kim H. J., Michor F., Polyak K. Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype J. Clin. Invest 2010 120, N 2:636–644.
[129]
Graham T. A., McDonald S. A. Genetic diversity during the development of Barrett's oesophagus-associated adenocarcinoma: how, when and why? Biochem. Soc. Trans 2010 38, N 2:374–379.
[130]
Merlo L. M., Shah N. A., Li X., Blount P. L., Vaughan T. L., Reid B. J., Maley C. C. A comprehensive survey of clonal diversity measures in Barrett's esophagus as biomarkers of progression to esophageal adenocarcinoma Cancer Prev. Res. (Phila) 2010 3, N 11:1388–1397.
[132]
Davey P., Rauth A. M., Mason L., Addy L. Spontaneous phenotypic and karyotypic progression in the SV40 transfected cell line SVG during prolonged passage in vitro J. Neurooncol 1990 8, N 1:13–22.
[133]
Gao C., Furge K., Koeman J., Dykema K., Su Y., Cutler M. L., Werts A., Haak P., Vande Woude G. F. Chromosome instability, chromosome transcriptome, and clonal evolution of tumor cell populations Proc. Natl Acad. Sci. USA 2007 104, N 21:8995–9000.
[134]
Geyer F. C., Weigelt B., Natrajan R., Lambros M. B., de Biase D., Vatcheva R., Savage K., Mackay A., Ashworth A., Reis-Filho J. S. Molecular analysis reveals a genetic basis for the phenotypic diversity of metaplastic breast carcinomas J. Pathol 2010 220, N 5:562–573.
[135]
Kalisky T., Blainey P., Quake S. R. Genomic analysis at the single-cell level Annu. Rev. Genet 2011 45:431–445.
[136]
Bussey K. J., Chin K., Lababidi S., Reimers M., Reinhold W. C., Kuo W. L., Gwadry F., Ajay J., Kouros-Mehr H., Fridlyand J., Jain A., Collins C., Nishizuka S., Tonon G., Roschke A., Gehlhaus K., Kirsch I., Scudiero D. A., Gray J. W., Weinstein J. N. Integrating data on DNA copy number with gene expression levels and drug sensitivities in the NCI-60 cell line panel Mol. Cancer Ther 2006 5, N 4:853–867.
[137]
Yoshimoto T., Matsuura K., Karnan S., Tagawa H., Nakada C., Tanigawa M., Tsukamoto Y., Uchida T., Kashima K., Akizuki S., Takeuchi I., Sato F., Mimata H., Seto M., Moriyama M. High-resolution analysis of DNA copy number alterations and gene expression in renal clear cell carcinoma J. Pathol 2007 213, N 4:392–401.
[138]
Tsukamoto Y., Uchida T., Karnan S., Noguchi T., Nguyen L. T., Tanigawa M., Takeuchi I., Matsuura K., Hijiya N., Nakada C., Kishida T., Kawahara K., Ito H., Murakami K., Fujioka T., Seto M., Moriyama M. Genome-wide analysis of DNA copy number alterations and gene expression in gastric cancer J. Pathol 2008 216, N 4:471–482.
[139]
Jung S. H., Shin S. H., Yim S. H., Choi H. S., Lee S. H., Chung Y. J. Integrated analysis of copy number alteration and RNA expression profiles of cancer using a high-resolution whole-genome oligonucleotide array Exp. Mol. Med 2009 41, N 7:462–470.
[140]
Kadota M., Yang H. H., Gomez B., Sato M., Clifford R. J., Meerzaman D., Dunn B. K., Wakefield L. M., Lee M. P. Delineating genetic alterations for tumor progression in the MCF10A series of breast cancer cell lines PLoS One 2010 5, N 2 e9201.
[141]
Ortiz-Estevez M., De Las Rivas J., Fontanillo C., Rubio A. Segmentation of genomic and transcriptomic microarrays data reveals major correlation between DNA copy number aberrations and gene-loci expression Genomics 2011 97, N 2:86–93.
[142]
Huang N., Shah P. K., Li C. Lessons from a decade of integrating cancer copy number alterations with gene expression profiles Brief Bioinform 2012 13, N 3:305–316
[143]
Geiger T., Cox J., Mann M. Proteomic changes resulting from gene copy number variations in cancer cells PLoS Genet 2010 6, N 9 e1001090.
[144]
Valsesia A., Rimoldi D., Martinet D., Ibberson M., Benaglio P., Quadroni M., Waridel P., Gaillard M., Pidoux M., Rapin B., Rivolta C., Xenarios I., Simpson A. J., Antonarakis S. E., Beckmann J. S., Jongeneel C. V., Iseli C., Stevenson B. J. Networkguided analysis of genes with altered somatic copy number and gene expression reveals pathways commonly perturbed in metastatic melanoma PLoS One 2011 6, N 4 e18369.
[145]
Heng H. H., Liu G., Stevens J. B., Bremer S. W., Ye K. J., Ye C. J. Genetic and epigenetic heterogeneity in cancer: the ultimate challenge for drug therapy Curr. Drug Targets 2010 11, N 10:1304–1316.
[146]
Ye C. J., Stevens J. B., Liu G., Bremer S. W., Jaiswal A. S., Ye K. J., Lin M. F., Lawrenson L., Lancaster W. D., Kurkinen M., Liao J. D., Gairola C. G., Shekhar M. P., Narayan S., Miller F. R., Heng H. H. Genome based cell population heterogeneity promotes tumorigenicity: the evolutionary mechanism of cancer J. Cell Physiol 2009 219, N 2:288–300.
[147]
Crespi B., Summers K. Evolutionary biology of cancer Trends Ecol. Evol 2005 20, N 10:545–552.
[149]
Marusyk A., DeGregori J. Declining cellular fitness with age promotes cancer initiation by selecting for adaptive oncogenic mutations Biochim. Biophys. Acta 2008 1785, N 1:1–11.
[150]
Merlo L. M., Wang L. S., Pepper J. W., Rabinovitch P. S., Maley C. C. Polyploidy, aneuploidy and the evolution of cancer Adv. Exp. Med. Biol 2010 676:1–13.
[151]
Vincent M. D. The animal within: carcinogenesis and the clonal evolution of cancer cells are speciation events sensu stricto Evolution 2010 64, N 4:1173–1183.
[153]
Gatenby R. A., Gillies R. J., Brown J. S. Of cancer and cave fish Nat. Rev. Cancer 2011 11, N 4:237–238.
[154]
Roychowdhury S., Talpaz M. Managing resistance in chronic myeloid leukemia Blood Rev 2011 25, N 6:279–290.
[155]
Rosenzweig S. A. Acquired resistance to drugs targeting receptor tyrosine kinases Biochem. Pharmacol 2011 83, N 8:1041–1048.
[156]
Palakurthi S., Yellepeddi V. K., Vangara K. K. Recent trends in cancer drug resistance reversal strategies using nanoparticles Expert. Opin. Drug Deliv 2012 9, N 3:287–301.
[157]
Pao W., Chmielecki J. Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer Nat. Rev. Cancer 2010 10, N 11:760–774.
[158]
Mehra R., Serebriiskii I. G., Dunbrack R. L. Jr., Robinson M. K., Burtness B., Golemis E. A. Protein-intrinsic and signaling network-based sources of resistance to EGFRand ErbB familytargeted therapies in head and neck cancer Drug Resist. Updat 2011 14, N 6:260–279.
[159]
Carter C. A., Giaccone G. Treatment of nonsmall cell lung cancer: overcoming the resistance to epidermal growth factor receptor inhibitors Curr. Opin. Oncol 2012 24, N 2:123–129.
[160]
Brand T. M., Iida M., Wheeler D. L. Molecular mechanisms of resistance to the EGFR monoclonal antibody cetuximab Cancer Biol. Ther 2011 11, N 9:777–792.
[161]
Fiszman G. L., Jasnis M. A. Molecular mechanisms of trastuzumab resistance in HER2 overexpressing breast cancer. Int J Breast Cancer. 2011;2011:352182.
[162]
Rezvani A. R., Maloney D. G. Rituximab resistance Best. Pract. Res. Clin. Haematol 2011 24, N 2:203–216.
[163]
Jazirehi A. R., Bonavida B. Development of rituximab-resistant B-NHL clones: an in vitro model for studying tumor resistance to monoclonal antibody-mediated immunotherapy Methods Mol. Biol 2011 731:407–419.
[164]
Garrett J. T., Arteaga C. L. Resistance to HER2-directed antibodies and tyrosine kinase inhibitors: mechanisms and clinical implications Cancer Biol. Ther 2011 11, N 9:793–800.
[165]
Lovly C. M., Pao W. Escaping ALK inhibition: mechanisms of and strategies to overcome resistance Sci. Transl. Med 2012 4, N 120:120ps2.
[166]
Alcala A. M., Flaherty K. T. BRAF inhibitors for the treatment of metastatic melanoma: clinical trials and mechanisms of resistance Clin. Cancer Res 2012 18, N 1:33–39.
[167]
Little A. S., Balmanno K., Sale M. J., Smith P. D., Cook S. J. Tumour cell responses to MEK1/2 inhibitors: acquired resistance and pathway remodelling Biochem. Soc. Trans 2012 40, N 1:73–78.
[168]
Hochhaus A., Kreil S., Corbin A. S., La Rosee P., Muller M. C., Lahaye T., Hanfstein B., Schoch C., Cross N. C., Berger U., Gschaidmeier H., Druker B. J., Hehlmann R. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy Leukemia 2002 16, N 11:2190–2196.
[169]
Kotchetkov R., Cinatl J., Blaheta R., Vogel J. U., Karaskova J., Squire J., Hernaiz Driever P., Klingebiel T., Cinatl J. Jr. Development of resistance to vincristine and doxorubicin in neuroblastoma alters malignant properties and induces additional karyotype changes: a preclinical model Int. J. Cancer 2003 104, N 1:36–43.
[170]
Hu Y., Pang E., Lai P. B., Squire J. A., MacGregor P. F., Beheshti B., Albert M., Leung T. W., Wong N. Genetic alterations in doxorubicin-resistant hepatocellular carcinoma cells: a combined study of spectral karyotyping, positional expression profiling and candidate genes Int. J. Oncol 2004 25, N 5:1357–1364.
[171]
Pang E., Hu Y., Chan K. Y., Lai P. B., Squire J. A., Macgregor P. F., Beheshti B., Albert M., Leung T. W., Wong N. Karyotypic imbalances and differential gene expressions in the acquired doxorubicin resistance of hepatocellular carcinoma cells Lab. Invest 2005 85, N 5:664–674.
[172]
Swords R., Quinn J., Fay M., O'Donnell R., Goldman J., Murphy P. T. CML clonal evolution with resistance to single agent imatinib therapy Clin. Lab. Haematol 2005 27, N 5:347– 349.
[173]
Zaccaria A., Valenti A. M., Donti E., Gozzetti A., Ronconi S., Spedicato F. Persistence of chromosomal abnormalities additional to the Philadelphia chromosome after Philadelphia chromosome disappearance during imatinib therapy for chronic myeloid leukemia Haematologica 2007 92, N 4:564–565.
[174]
Rosenhahn J., Weise A., Michel S., Hennig K., Hartmann I., Schiefner J., Schubert K., Liehr T., von Eggeling F., Loncarevic I. F. Cytogenetic characterisation and proteomic profiling of the Imatinib-resistant cell line KCL22-R Int. J. Oncol 2007 31, N 1:121–128.
[175]
Whittington P. J., Piechocki M. P., Heng H. H., Jacob J. B., Jones R. F., Back J. B., Wei W. Z. DNA vaccination controls Her-2+ tumors that are refractory to targeted therapies Cancer Res 2008 68, N 18:7502–7511.
[176]
Yamamoto K., Yakushijin K., Nishikawa S., Minagawa K., Katayama Y., Shimoyama M., Matsui T. Imatinib resistance in a novel translocation der(17)t(1;17)(q25;p13) with loss of TP53 but without BCR/ABL kinase domain mutation in chronic myelogenous leukemia Cancer Genet. Cytogenet 2008 183, N 1:77–81.
[177]
Dencic-Fekete M., Dordevic V., Storlazzi C.T., Jankovic G., Bogdanovic A., Jovanovic J., Rocchi M., Todoric-Zivanovic B., Strnad M., Gotic M. t(5;6;12) associated with resistance to imatinib mesylate in chronic myeloid leukemia Int. J. Hematol 2009 89, N 4:508–512.
[178]
Yuan J., Shah R., Kulharya A., Ustun C. Near-tetraploidy clone can evolve from a hyperdiploidy clone and cause resistance to lenalidomide and bortezomib in a multiple myeloma patient Leuk. Res 2010 34, N 7:954–957.
[179]
Hashemi J., Worrall C., Vasilcanu D., Fryknas M., Sulaiman L., Karimi M., Weng W. H., Lui W. O., Rudduck C., Axelson M., Jernberg-Wiklund H., Girnita L., Larsson O., Larsson C. Molecular characterization of acquired tolerance of tumor cells to picropodophyllin (PPP) PLoS One 2011 6, N 3 e14757.
[180]
Tegze B., Szallasi Z., Haltrich I., Penzvalto Z., Toth Z., Liko I., Gyorffy B. Parallel evolution under chemotherapy pressure in 29 breast cancer cell lines results in dissimilar mechanisms of resistance PLoS One 2012 7, N 2 e30804.
[181]
Michaelis M., Rothweiler F., Barth S., Cinatl J., van Rikxoort M., Loschmann N., Voges Y., Breitling R., von Deimling A., Rodel F., Weber K., Fehse B., Mack E., Stiewe T., Doerr H. W., Speidel D., Cinatl J. Jr. Adaptation of cancer cells from different entities to the MDM2 inhibitor nutlin-3 results in the emergence of p53-mutated multi-drug-resistant cancer cells Cell Death Dis 2011 2 e243.
[182]
Kuramitsu Y., Taba K., Ryozawa S., Yoshida K., Zhang X., Tanaka T., Maehara S., Maehara Y., Sakaida I., Nakamura K. Identification of upand down-regulated proteins in gemcitabineresistant pancreatic cancer cells using two-dimensional gel electrophoresis and mass spectrometry Anticancer Res 2010 30, N 9:3367–3372.
[183]
Yoshida K., Kuramitsu Y., Murakami K., Ryozawa S., Taba K., Kaino S., Zhang X., Sakaida I., Nakamura K. Proteomic differential display analysis for TS-1-resistant and -sensitive pancreatic cancer cells using two-dimensional gel electrophoresis and mass spectrometry Anticancer Res 2011 31, N 6:2103– 2108.
[184]
Chen Y. W., Liu J. Y., Lin S. T., Li J. M., Huang S. H., Chen J. Y., Wu J. Y., Kuo C. C., Wu C. L., Lu Y. C., Chen Y. H., Fan C. Y., Huang P. C., Law C. H., Lyu P. C., Chou H. C., Chan H. L. Proteomic analysis of gemcitabine-induced drug resistance in pancreatic cancer cells Mol. Biosyst 2011 7, N 11:3065–3074.
[185]
Ong P. S., Chan S. Y., Ho P. C. Microarray analysis revealed dysregulation of multiple genes associated with chemoresistance to As(2)O(3) and increased tumor aggressiveness in a newly established arsenic-resistant ovarian cancer cell line, OVCAR-3/AsR Eur. J. Pharm. Sci 2011 45, N 3:367–378.
[186]
Kars M. D., Iseri O. D., Gunduz U. A microarray based expression profiling of paclitaxel and vincristine resistant MCF-7 cells Eur. J. Pharmacol 2011 657, N 1–3:4–9.
[187]
Iseri O. D., Kars M. D., Arpaci F., Atalay C., Pak I., Gunduz U. Drug resistant MCF-7 cells exhibit epithelial-mesenchymal transition gene expression pattern Biomed. Pharmacother 2011 65, N 1:40–45.
[188]
Iseri O. D., Kars M. D., Gunduz U. Two different docetaxel resistant MCF-7 sublines exhibited different gene expression pattern Mol. Biol. Rep 2012 39, N 4:3505–3516.
[189]
Mutlu P., Ural A. U., Gunduz U. Differential gene expression analysis related to extracellular matrix components in drug-resistant RPMI-8226 cell line Biomed. Pharmacother 2012 66, N 3:228–231.
[190]
Chen G., Bradford W. D., Seidel C. W., Li R. Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy Nature 2012 482, N 7384:246–250.
[191]
Selmecki A. M., Dulmage K., Cowen L. E., Anderson J. B., Berman J. Acquisition of aneuploidy provides increased fitness during the evolution of antifungal drug resistance PLoS Genet 2009 5, N 10 e1000705.
[192]
Ubeda J. M., Legare D., Raymond F., Ouameur A. A., Boisvert S., Rigault P., Corbeil J., Tremblay M. J., Olivier M., Papadopoulou B., Ouellette M. Modulation of gene expression in drug resistant Leishmania is associated with gene amplification, gene deletion and chromosome aneuploidy Genome Biol 2008 9, N 7 R115.
[193]
Leprohon P., Legare D., Raymond F., Madore E., Hardiman G., Corbeil J., Ouellette M. Gene expression modulation is associated with gene amplification, supernumerary chromosomes and chromosome loss in antimony-resistant Leishmania infantum Nucleic Acids Res 2009 37, N 5:1387–1399.
[194]
Sionov E., Lee H., Chang Y. C., Kwon-Chung K. J. Cryptococcus neoformans overcomes stress of azole drugs by formation of disomy in specific multiple chromosomes PLoS Pathog 2010 6, N 4 e1000848.
[195]
Semighini C. P., Averette A. F., Perfect J. R., Heitman J. Deletion of Cryptococcus neoformans AIF ortholog promotes chromosome aneuploidy and fluconazole-resistance in a metacaspaseindependent manner PLoS Pathog 2011 7, N 11 e1002364.
[196]
Pavelka N., Rancati G., Li R. Dr Jekyll and Mr Hyde: role of aneuploidy in cellular adaptation and cancer Curr. Opin. Cell. Biol 2010 22, N 6:809–815.
[197]
Piras C., Soggiu A., Bonizzi L., Gaviraghi A., Deriu F., De Martino L., Iovane G., Amoresano A., Roncada P. Comparative proteomics to evaluate multi drug resistance in Escherichia coli Mol. Biosyst 2011 8, N 4:1060–1067.
[198]
Toprak E., Veres A., Michel J. B., Chait R., Hartl D. L., Kishony R. Evolutionary paths to antibiotic resistance under dynamically sustained drug selection Nat. Genet 2011 44, N 1:101–105.
[199]
Sass A., Marchbank A., Tullis E., Lipuma J. J., Mahenthiralingam E. Spontaneous and evolutionary changes in the antibiotic resistance of Burkholderia cenocepacia observed by global gene expression analysis BMC Genomics 2011 12:373.
[200]
Jackson M. A., Stack H. F., Waters M. D. Genetic activity profiles of anticancer drugs Mutat. Res 1996 355, N 1–2:171– 208.
[201]
Bonatti S., Simili M., Benedetti P. A., Morandi F., Menichini P., Del Carratore R., Barale R., Abbondandolo A. Altered centrosomes in ataxia-telangiectasia cells and rapamycin-treated Chinese hamster cells Environ. Mol. Mutagen 2005 46, N 3:164–173.
[202]
Fabarius A., Giehl M., Frank O., Spiess B., Zheng C., Muller M. C., Weiss C., Duesberg P., Hehlmann R., Hochhaus A., Seifarth W. Centrosome aberrations after nilotinib and imatinib treatment in vitro are associated with mitotic spindle defects and genetic instability Br. J. Haematol 2007 138, N 3:369–373.
[203]
Fabarius A., Giehl M., Rebacz B., Kramer A., Frank O., Haferlach C., Duesberg P., Hehlmann R., Seifarth W., Hochhaus A. Centrosome aberrations and G1 phase arrest after in vitro and in vivo treatment with the SRC/ABL inhibitor dasatinib Haematologica 2008 93, N 8:1145–1154.
[204]
Goncalves E. M., Ventura C. A., Yano T., Rodrigues Macedo M. L., Genari S. C. Morphological and growth alterations in Vero cells transformed by cisplatin Cell Biol. Int 2006 30, N 6:485–494.
[205]
Bueno C., Catalina P., Melen G. J., Montes R., Sanchez L., Ligero G., Garcia-Perez J. L., Menendez P. Etoposide induces MLL rearrangements and other chromosomal abnormalities in human embryonic stem cells Carcinogenesis 2009 30, N 9:1628– 1637.
[206]
Zacharaki P., Stephanou G., Demopoulos N. A. Comparison of the aneugenic properties of nocodazole, paclitaxel and griseofulvin in vitro. Centrosome defects and alterations in protein expression profiles J. Appl. Toxicol 2012.
[207]
Mujoo K., Zhang L., Klostergaard J., Donato N. J. Emergence of cisplatin-resistant cells from the OVCAR-3 ovarian carcinoma cell line with p53 mutations, altered tumorigenicity, and increased apoptotic sensitivity to p53 gene replacement Int. J. Gynecol. Cancer 2000 10, N 2:105–114.
[208]
Blaheta R. A., Daher F. H., Michaelis M., Hasenberg C., Weich E. M., Jonas D., Kotchetkov R., Doerr H. W., Cinatl J. Jr. Chemoresistance induces enhanced adhesion and transendothelial penetration of neuroblastoma cells by down-regulating NCAM surface expression BMC Cancer 2006 6:294.
[209]
Lopez de Mesa R., Lopez de Cerain Salsamendi A., Ariznabarreta L. S., Calasanz Abinzano M. J., Patino-Garcia A. Measurement and analysis of the chemotherapy-induced genetic instability in pediatric cancer patients Mutagenesis 2002 17, N 2:171–175.
[210]
Hijiya N., Hudson M. M., Lensing S., Zacher M., Onciu M., Behm F. G., Razzouk B. I., Ribeiro R. C., Rubnitz J. E., Sandlund J. T., Rivera G. K., Evans W. E., Relling M. V., Pui C. H. Cumulative incidence of secondary neoplasms as a first event after childhood acute lymphoblastic leukemia JAMA 2007 297, N 11:1207–1215.
[211]
Meadows A. T., Friedman D. L., Neglia J. P., Mertens A. C., Donaldson S. S., Stovall M., Hammond S., Yasui Y., Inskip P. D. Second neoplasms in survivors of childhood cancer: findings from the Childhood Cancer Survivor Study cohort J. Clin. Oncol 2009 27, N 14:2356–2362.
[212]
Arnault J. P., Wechsler J., Escudier B., Spatz A., Tomasic G., Sibaud V., Aractingi S., Grange J. D., Poirier-Colame V., Malka D., Soria J. C., Mateus C., Robert C. Keratoacanthomas and squamous cell carcinomas in patients receiving sorafenib J. Clin. Oncol 2009 27, N 23 e59–61.
[213]
Witt K. L., Bishop J. B. Mutagenicity of anticancer drugs in mammalian germ cells Mutat. Res 1996 355, N 1–2:209–234.
[214]
Chandrakasan S., Ye C. J., Chitlur M., Mohamed A. N., Rabah R., Konski A., Heng H. H., Savagan S. Malignant fibrous histiocytoma two years after autologous stem cell transplant for Hodgkin lymphoma: evidence for genomic instability Pediatr. Blood Cancer 2011 56, N 7:1143–1145.
[215]
Glen C. D., Smith A. G., Dubrova Y. E. Single-molecule PCR analysis of germ line mutation induction by anticancer drugs in mice Cancer Res 2008 68, N 10:3630–3636.
[216]
Glen C. D., Dubrova Y. E. Exposure to anticancer drugs can result in transgenerational genomic instability in mice Proc. Natl Acad. Sci. USA 2012 109, N 8:2984–2988.
[217]
Correa D. D., Ahles T. A. Neurocognitive changes in cancer survivors Cancer J 2008 14, N 6:396–400.
[218]
Fardell J. E., Vardy J., Johnston I. N., Winocur G. Chemotherapy and cognitive impairment: treatment options Clin. Pharmacol. Ther 2011 90, N 3:366–376.
[219]
Janelsins M. C., Kohli S., Mohile S. G., Usuki K., Ahles T.A., Morrow G. R. An update on cancerand chemotherapy-related cognitive dysfunction: current status Semin. Oncol 2011 38, N 3:431–438.
[220]
Hartmann J. T., Haap M., Kopp H. G., Lipp H. P. Tyrosine kinase inhibitors – a review on pharmacology, metabolism and side effects Curr. Drug Metab 2009 10, N 5:470–481.
[221]
Amitay-Laish I., Stemmer S. M., Lacouture M. E. Adverse cutaneous reactions secondary to tyrosine kinase inhibitors including imatinib mesylate, nilotinib, and dasatinib Dermatol. Ther 2011 24, N 4:386–395.
[222]
Min J. H., Lee H. Y., Lim H., Ahn M. J., Park K., Chung M. P., Lee K. S. Drug-induced interstitial lung disease in tyrosine kinase inhibitor therapy for non-small cell lung cancer: a review on current insight Cancer Chemother. Pharmacol 2011 68, N 5:1099–1109.
[223]
Blake-Haskins J. A., Lechleider R. J., Kreitman R. J. Thrombotic microangiopathy with targeted cancer agents Clin. Cancer Res 2011 17, N 18:5858–5866.
[224]
Ravaud A. Treatment-associated adverse event management in the advanced renal cell carcinoma patient treated with targeted therapies Oncologist 2011 16, Suppl. 2:32–44.
[225]
Walraven M., Witteveen P. O., Lolkema M. P., van Hillegersberg R., Voest E. E., Verheul H. M. Antiangiogenic tyrosine kinase inhibition related gastrointestinal perforations: a case report and literature review Angiogenesis 2011 14, N 2:135–141.
[226]
Eschenhagen T., Force T., Ewer M. S., de Keulenaer G. W., Suter T. M., Anker S. D., Avkiran M., de Azambuja E., Balligand J. L., Brutsaert D. L., Condorelli G., Hansen A., Heymans S., Hill J. A., Hirsch E., Hilfiker-Kleiner D., Janssens S., de Jong S., Neubauer G., Pieske B., Ponikowski P., Pirmohamed M., Rauchhaus M., Sawyer D., Sugden P. H., Wojta J., Zannad F., Shah A. M. Cardiovascular side effects of cancer therapies: a position statement from the heart failure association of the european society of cardiology Eur. J. Heart Fail 2011 13, N 1:1–10.
[227]
Salie R., Silver R. T. Uncommon or delayed adverse events associated with imatinib treatment for chronic myeloid leukemia Clin. Lymphoma Myeloma Leuk 2010 10, N 5:331– 335.
[228]
Bonny M., Buyse V., Brochez L. Dermatological side effects of current and upcoming targeted therapies in oncology Acta Clin. Belg 2011 66, N 2:97–103.
[229]
Witteles R. M., Fowler M. B., Telli M. L. Chemotherapyassociated cardiotoxicity: how often does it really occur and how can it be prevented? Heart Fail Clin 2011 7, N 3:333–344.
[230]
Grover S., Hill-Kayser C. E., Vachani C., Hampshire M. K., Dilullo G. A., Metz J. M. Patient reported late effects of gynecological cancer treatment Gynecol. Oncol 2012 124, N 3:399–403.
[231]
Gutzmer R., Wollenberg A., Ugurel S., Homey B., Ganser A., Kapp A. Cutaneous side effects of new antitumor drugs: clinical features and management Dtsch. Arztebl. Int 2012 109, N 8:133–140.
[232]
Hysing J., Wist E. Cardiotoxic effects of trastuzumab Tidsskr. Nor. Laegeforen 2011 131, N 22:2239–2241.
[233]
O'Regan K. N., Jagannathan J. P., Ramaiya N., Hodi F. S. Radiologic aspects of immune-related tumor response criteria and patterns of immune-related adverse events in patients undergoing ipilimumab therapy AJR Am. J. Roentgenol 2011 197, N 2 W241–246.
[234]
Wolach O., Shpilberg O., Lahav M. Neutropenia after rituximab treatment: new insights on a late complication Curr. Opin. Hematol 2012 19, N 1:32–38.
[235]
Brambilla G., Mattioli F., Robbiano L., Martelli A. Update of carcinogenicity studies in animals and humans of 535 marketed pharmaceuticals Mutat. Res 2011 197, N 2:241–246.
[237]
Todorovic-Rakovic N. Genome-based versus gene-based theory of cancer: possible implications for clinical practice J. Biosci 2011 36, N 4:719–724.
[239]
Fox E. J., Beckman R. A., Loeb L. A. Reply: is there any genetic instability in human cancer? DNA Repair (Amst) 2010 9, N 8:859–860.
[240]
Aktipis C. A., Kwan V. S., Johnson K. A., Neuberg S. L ., Maley C. C. Overlooking evolution: a systematic analysis of cancer relapse and therapeutic resistance research PLoS One 2011 6, N 11 e26100.
[241]
Longo D. L. Tumor heterogeneity and personalized medicine N. Engl. J. Med 2012 366, N 10:956–957.
[242]
Navin N., Hicks J. Future medical applications of single-cell sequencing in cancer Genome Med 2011 3, N 5:31.