Biopolym. Cell. 2012; 28(3):171-180.
Reviews
Role of phytolectin in the life cycle of plants
1, 3Kovalchuk N. V., 2Melnykova N. M., 3Musatenko L. I.
  1. Australian Centre for Plant Functional Genomics, The University of Adelaide
    PMB 1, Glen Osmond, SA 5604, Australia
  2. Institute of Plant Physiology and Genetics, NAS of Ukraine
    31/17, Vasylkivska, Kyiv, Ukraine, 03022
  3. M. G. Kholodny Institute of Botany, NAS of Ukraine
    2, Tereschenkivska Str., Kyiv, Ukraine, 01601

Abstract

In the review the basic properties of plant lectins and their physiological role in the life cycle of plants are considered. There are data on the current state of the researches of phytolectins and lectin-like proteins as well as designation of the main directions of further study on the functioning of these proteinsin the plant physiological processes.
Keywords: phytolectins, carbohydrate binding properties, physiological role, life cycle

References

[1] Antonyuk V. O. Lectins and their stock sources Lviv: Kvart, 2005 554 p.
[2] Lutsyk M. D., Panasyuk E. N., Lutsyk A. D. Lectins Lviv: Vyshcha Shkola, 1984 155 p.
[3] Hori K., Matsubara K., Miyazawa K. Primary structure of two hemagglutinins from the marine red alga, Hypnea japonica Biochim. Biophys. Acta 2000 1474, N 2:226–236.
[4] Kosenko L. V. Comparative characteristics of carbohydrate binding by lectins from broad bean, pea, common vetch, and lentil seeds Russ. J. Plant Physiol 2002 49, N 5:641–646.
[5] Sreevidya V. S., Hernandez-Oane R. J., So R. B., Sullia S. B., Stacey G., Ladha J. K., Reddy P. M. Expression of the legume symbiotic lectin genes psl and gs52 promotes rhizobial colonization of roots in rice Plant Sci 2005 169, N 4:726–736.
[6] Loris R., Hamelryck T., Bouckaert J., Wyns L. Legume lectin structure Biochim. Biophys. Acta 1998 1383, N 1:9–36.
[7] Pratap J. V., Jeyaprakash A. A., Rani P. G., Sekar K., Surolia A., Vijayan M. Crystal structures of artocarpin, a Moraceae lectin with mannose specificity, and its complex with methyl-alphaD-mannose: implications to the generation of carbohydrate specificity J. Mol. Biol 2002 317, N 2:237–247.
[8] Bogoeva V. P., Radeva M. A., Atanasova L. Y., Stoitsova S. R., Boteva R. N. Fluorescence analysis of hormone binding activities of wheat germ agglutinin Biochim. Biophys. Acta 2004 1698, N 2:213–218.
[9] Delatorre P., Rocha B. A., Souza E. P., Oliveira T. M., Bezerra G. A., Moreno F. B., Freitas B. T., Santi-Gadelha T., Sampaio A. H., Azevedo W. F. Jr., Cavada B. S. Structure of a lectin from Canavalia gladiata seeds: new structural insights for old molecules BMC Struct. Biol 2007 7:52.
[10] Roopashree S., Singh S. A., Gowda L. R., Rao A. G. Dual-function protein in plant defence: seed lectin from Dolichos biflorus (horse gram) exhibits lipoxygenase activity Biochem J 2006 395, N 3:629–639.
[11] Osborn T. C., Burow M., Bliss F. A. Purification and characterization of arcelin seed protein from common bean Plant Physiol 1988 86, N 2:399–405.
[12] Peumans W. J., Van Damme E. J. Lectins as plant defence proteins Plant Physiol 1995 109, N 2:347–352.
[13] Herve C., Serres J., Dabos P., Canut H., Barre A., Rouge P., Lescure B. Characterization of the Arabidopsis lecRK-a genes: members of a superfamily encoding putative receptors with an extracellular domain homologous to legume lectins Plant Mol. Biol 1999 39, N 4:671–682.
[14] O'Donoghue E. M., Somerweld S. D., Watson L. M., Brummell D. A., Hunter D. A. Galactose metabolism in cell walls of opening and senescing petunia petals Planta 2009 229, N 3 P. 709–721.
[15] Brill L. M., Fujshiga N. A., Hackworth C. A., Hirsch A. M. Expression of MsLEC1 transgenes in alfalfa plants causes symbiotic abnormalities Mol. Plant Microbe Interact 2004 17, N 1:16–26.
[16] Van Damme E. J., Lannoo N., Fouquaert E., Peumans W. J. The identification of inducible cytoplasmic/nuclear carbohydratebinding proteins urges to develop novel concepts about the role of plant lectins Glycoconj. J 2004 20, N 7–8:449–460.
[17] Talbot C. F., Etzler M. E. Development and distribution of Dolichos biflorus lectin as measured by radioimmunoassay Plant Physiol 1978 61, N 5:847–850.
[18] Nsimba-Lubaki M., Peumans W. J. Seasonal fluctuations of lectins in barks of elderberry (Sambucus nigra) and black locust (Robinia pseudoacacia) Plant Physiol 1986 80, N 3 P. 747–751.
[19] Oliveira J. T. A., Moraes S. M. D., Cavada B. S., Moreira R. A., Vasconcelos I. M. Protein and lectin mobilization during Erythrina velutina forma aurantiaca seed germination and seedling growth in the dark Revista Brasil. Fisiol. Vegetal 1998 10, N 1:25–30.
[20] Kittur F. S., Lalgondar M., Yu H. Y., Bevan D. R., Esen A. Maize beta-glucosidase-aggregating factor is a polyspecific jacalin-related chimeric lectin, and its lectin domain is responsible for beta-glucosidase aggregation J. Biol. Chem 2007 282, N 10 P. 7299–7311.
[21] Ueda H., Fukushima H., Hatanaka Y., Ogawa H. Solubility insolubility interconversion of sophoragrin, a mannose/glucose-specific lectin in Sophora japonica (Japanese pagoda tree) bark, regulated by the sugar-spesific interaction Biochem. J 2004 382, Pt 3:821–829.
[22] Mishkind M., Keegstra K., Palevitz B. Distribution of wheat germ agglutinin in young wheat plants Plant Physiol 1980 66, N 5:950–955.
[23] Esteban R., Dopico B., Munoz F. J., Romo S., Labrador E. A seedling specific vegetative lectin gene is related to development in Cicer arietinum Physiol. Plant 2002 114, N 4:619–626.
[24] Bezrukova M. V., Lubyanova A. R., Fatkhutdinova R. A. The involvement of wheat and common bean lectins in the control of cell division in the root apical meristems of various plant species Russ. J. Plant Physiol 2011 58, N 1:174–180.
[25] Wolters H., Jurgens G. Survival of the flexible: hormonal growth control and adaptation in plant development Nat. Rev. Genet 2009 10, N 5:305–317.
[26] Borrebaeck C. A., Linsefors L. Hormonal regulation of the lectin biosynthesis in callus culture of the Phaseolus vulgaris Plant Physiol 1985 79, N 3:659–662.
[27] Shakirova F. M., Avalbaev A. M., Bezrukova M. V., Gimalov F. R. Induction of wheat germ agglutinin synthesis by abscisic and gibberellic acids in roots of wheat seedlings Plant Growth Reg 2001 33, N 2:111–115.
[28] James D. W., Ghosh M., Etzler M. E. Production of a lectin in tissue cultures of Dolichos biflorus Plant Physiol 1985 77, N 3:630–634.
[29] Bezrukova M. V., Aval'baev A. M., Kil'dibekova A. R., Fatkhutdinova R. A., Shakirova F. M. Interaction of wheat lectin with 24epibrassinolide in the regulation of cell division in wheat roots Dokl. Biol. Sci 2002 387, N 1–6:533–535.
[30] Meyer A., Rypniewski W., Szymanski M., Voelter W., Barciszewski J., Betzel C. Structure of mistletoe lectin I from Viscum album in complex with the phytohormone zeatin Biochim. Biophys. Acta 2008 1784, N 11:1590–1595.
[31] Xiang Y., Song M., Wei Z., Tong J., Zhang L., Xiao L., Ma Z., Wang Y. A jacalin-related lectin-like gene in wheat is a componenet of the plant defence system J. Exp. Bot 2011 62, N 15:5471–5483.
[32] Zhu-Salzman K., Salzman R. A., Koiwa H., Murdock L. L., Bressan R. A., Hasegawa P. M. Ethylene negatively regulates local expression of plant defense lectin genes Physiol. Plant 1998 104, N 3:365–372.
[33] Hoson T., Masuda Y., Sone Y., Misaki A. Xyloglucan antibodies inhibit auxin-induced elongation and cell wall loosening of Azuki bean epicotyls but not of oat coleoptiles Physiol. Plant 1991 96, N 2:551–557.
[34] Hoson T., Masuda Y. Effect of lectins on auxin-induced elongation and wall loosening in oat coleoptile and azuki bean epicotyl segments Physiol. Plant 1987 71, N 1:1–8.
[35] Barre A., Herve C., Lescure B., Rouge P. Lectin receptor kinases in plants Crit. Rev. Plant Sci 2002 21, N 4:379–399.
[36] Deng K., Wang Q., Zeng J., Guo X., Zhao X., Tang D., Liu X. A lectin receptor kinase positively regulates ABA response during seed germination and is involved in salt and osmotic stress response J. Plant Biol 2009 52, N 6:493–500.
[37] Xin Z., Wang A., Yang G., Gao P., Zheng Z. L. The Arabidopsis A4 subfamily of lectin receptor kinases negatively regulates abscisic acid response in seed germination Plant Physiol 2009 149, N 1:434–444.
[38] Aleksidze G. Ya., Litvinov A. I., Vyskrebentseva E. I. The model of Calvin cycle enzyme organization on thylakoid membranes with the involvement of the photosystem I lectin Russ. J. Plant Physiol 2002 49, N 1:137–141.
[39] Nagano A. J., Fukao Y., Fujiwara M., Hara-Nishimura I. Antagonistic jacalin-related lectins regulate the size of ER body-type beta-glucosidase complexes in Arabidopsis thaliana Plant Cell Physiol 2008 49, N 6:969–980.
[40] Young M. N., Oomen R. P. Analysis of sequence variation among legume lectins. A ring of hypervariable residues forms the perimeter of the carbohydrate-binding site J. Mol. Biol 1992 228, N 3:924–934.
[41] Owens R. A., Blackburn M., Ding B. Possible involvement of the phloem lectin in long-distance viroid movement Mol. Plant Microbe Interact 2001 14, N 7:905–909.
[42] Gomez G., Pallas V. A long-distance translocatable phloem protein from cucumber forms a ribonucleoprotein complex in vivo with Hop stunt viroid RNA J. Virol 2004 78, N 18 P. 10104–10110.
[43] Gomez G., Torres H., Pallas V. Identification of translocatable RNA-binding phloem proteins from melon, potential components of the long-distance RNA transport system Plant J 2005 41, N 1:107–116.
[44] Beneteau J., Renard D., Marche L., Douville E., Lavenant L., Rahbe Y., Dupont D., Vilaine F., Dinant S. Binding properties of the N-acetylglucosamine and high-mannose N-glycan PP2-A1 phloem lectin in Arabidopsis Plant Physiol 2010 153, N 3 P. 1345–1361.
[45] Matveeva N., Lazareva E., Klyushnik T., Zozulya S., Ermakov I. Lectins of the Nicotiana tabacum pollen grain walls stimulating in vitro pollen germination Russ. J. Plant Physiol 2007 54, N 5:619–625.
[46] Wan J., Patel A., Mathieu M., Kim S. Y., Xu D., Stacey G. A lectin receptor-like kinase is required for pollen development in Arabidopsis Plant Mol. Biol 2008 67, N 5:469–482.
[47] Kovalchuk N. V., Musatenko L. I. Lectins during seed development Reports Nat. Acad. Sci. Ukraine 2000 N 7:169–173.
[48] Komarova E. N. Lectins of stem apices of Rudbeckia and Perilla plants during the transition to flowering under effect of photoperiodical induction Appl. Biochem. Microbiol 1998 34, N 1:101–105.
[49] Priem B., Gross K. C. Mannosyland xylosylcontaining glycans promote tomato (Lycopersicon esculentum Mill.) fruit ripening Plant Physiol 1992 98, N 1:399–401.
[50] Yunovitz H., Gross K. C. Delay of tomato fruit ripening by an oligosaccharide N-glican. Interactions with IAA, galactose and lectins Physiol. Plant 1994 90, N 1:152–156.
[51] Chrispeels M. J., Greenwood J. S. Heat stress enhances phytohemagglutinin synthesis but inhibits its transport out of the endoplasmic reticulum Plant Physiol 1987 83, N 4 P. 778–784.
[52] Fouquaert E., Peumans W. J., Smith D. F., Proost P., Savvides S. N., Van Damme E. J. The «old» Euonymus europaeus agglutinin represents a novel family of ubiquitous plant proteins Plant Physiol 2008 147, N 3:1316–1324.
[53] Komarova E. N., Vyskrebentseva E. I., Trunova T. I. Activity of lectin-like proteins of the cell walls and the outer organelle membranes as related to endogenous ligands in cold-adapted seedlings of winter wheat Russ. J. Plant Physiol 2003 50, N 4 P. 455–460.
[54] Garaeva L. D., Pozdeeva S. A., Timofeeva O. A., Khokhlova L. P. Cell-wall lectins during winter wheat cold hardening Russ. J. Plant Physiol 2006 53, N 6:746–750.
[55] Bezrukova M., Kildibekova A., Shakirova F. WGA reduces the level of oxidative stress in wheat seedlings under salinity Plant Growth Reg 2008 54, N 3:195–201.
[56] Broekaert W. F., van Parijs J., Leyns F., Joos H., Peumans W. J. A chitin-binding lectin from stinging nettle rhizomes with antifungal properties Science 1989 245, N 4922:1100–1102.
[57] Ciopraga J., Gozia O., Tudor R., Brezuica L., Doyle R. J. Fusarium sp. growth inhibition by wheat germ agglutinin Biochim. Biophys. Acta 1999 1428, N 2–3:424–432.
[58] Brambl R., Gade W. Plant seed lectins disrupt growth of germinating fungal spores Physiol. Plant 1985 64, N 3:402–408.
[59] Does M. P., Houterman P. M., Dekker H. L., Cornelissen B. J. C. Processing, targeting, and antifungal activity of stinging nettle agglutinin in transgenic tobacco Plant Physiol 1999 120, N 2:421–431.
[60] Rozhnova N. A., Gerashchenkov G. A., Babosha A. V. The effect of arachidonic acid and viral infection on the phytohemagglutinin activity during the development of tobacco acquired resistance Russ. J. Plant Physiol 2003 50, N 5:661–665.
[61] Kanzaki H., Saitoh H., Takahashi Y., Berberich T., Ito A., Kamoun S., Terauchi R. NbLRK1, a lectin-like receptor kinase protein of Nicotiana benthamiana, interacts with Phytophthora infestans INF1 elicitin and mediates INF1-induced cell death Planta 2008 228, N 6:977–987.
[62] Sprawka I., Golawska S. Effect of the lectin PHA on the feeding behavior of the grain aphid J. Pest Sci 2010 83, N 2 P. 149–155.
[63] Osborni T. C., Alexander D. C., Sun S. S., Cardona C., Bliss F. A. Insecticidal activity and lectin homology of arcelin seed protein Science 1988 240, N 4849:207–210.
[64] Moreno J., Altabella T., Chrispeels M. J. Characterization of alpha-amylase-inhibitor, a lectin-like protein in the seeds of Phaseolus vulgaris Plant Physiol 1990 92, N 3:703–709.
[65] Fakhoury A. M., Woloshuk C. P. Inhibition of growth of Aspergillus flavus and fungal alpha-amylases by a lectin-like protein from Lablab purpureus Mol. Plant Microbe Interact 2001 14, N 8:955–961.
[66] Sadeghi A., Van Damme E. J., Peumans W. J., Smagghe G. Deterrent activity of plant lectins on cowpea weevil Callosobruchus maculates (F.) oviposition Phytochemistry 2006 67, N 18:2078–2084.
[67] Wang W., Hause B., Peumans W. J., Smagghe G., Mackie A., Fraser R., van Damme E. J. The Tn antigen-specific lectin from gound ivy is an insecticidal protein with an unusual physiology Plant Physiol 2003 132, N 3:1322–1334.
[68] Citores L., Ferreras J. M., Iglesias R., Carbajales M. L., Arias F. J., Jimenez P., Rojo M. A., Girbes T. Molecular mechanism of inhibition of mammalian protein synthesis by some four chain agglutinins. Proposal of an extended classification of plant ribosome inactivating proteins (rRNA N-glycosidases) FEBS Lett 1993 329, N 1–2:59–62.
[69] Subramanyam S., Smith D. F., Clemens J. C., Webb M. A., Sardesai N., Williams C. E. Functional characterization of HFR1, a high-mannose N-glycan-specific wheat lectin induced by Hessian fly larvae Plant Physiol 2008 147, N 3:1412–1426.
[70] Fountain D. W., Foard D. E., Replogle W. D., Yang W. K. Lectin release by soybean seeds Science 1977 197, N 4309 P. 1185–1187.
[71] Kjemtrup S., Borkhsenious O., Raikhel N. V., Chrispeels M. J. Targeting and release of phytohemagglutinin from the roots of bean seedlings Plant Physiol 1995 109, N 2:603–610.
[72] Dazzo F. B., Truchet G. L. Interactions of lectins and their saccharide receptors in the Rhizobium-legume symbiosis J. Membr. Biol 1983 73, N 1:1–16.
[73] van Rhijn P., Fujishige N. A., Lim P. O., Hirsch A. M. Sugarbinding activity of pea lectin enhances heterologous infection of transgenic alfalfa plants by Rhizobium leguminosarum biovar viciae Plant Physiol 2001 126, N 1:133–144.
[74] Baimiev A. Kh., Gubaidullin I. I., Chemeris A. V., Vakhitov V. A. Contribution of lectin sugar-binding peptides structure determines specificity of rhizobium-legume symbiosis in Galega orientalis and Galega officinalis Mol. Biol. (Mosk) 2005 39, N 1 P. 103–111.
[75] Diaz C. L., Spaink H. P., Kijne J. W. Heterologous rhizobial lipochitin oligosaccharides and chitin oligomers induce cortical cell divisions in red clover roots, transformed with the pea lectin gene Mol. Plant Microbe Interact 2000 13, N3:268–276.
[76] Etzler M. E., Kalsi G., Ewing N. N., Roberts N. J., Day B. R., Murphy J. B. A nod factor binding lectin with apyrase activity from legume roots Proc. Natl Acad. Sci. USA 1999 96, N 10:5856–5861.
[77] Govindarajulu M., Kim S. Y., Libault M., Berg R. H., Tanaka K., Stacey G., Taylor C. G. GS52 ecto-apyrase plays a critical role during soybean nodulation Plant Physiol 2009 149, N 2 P. 994–1004.
[78] Navarro-Gochicoa M. T., Camut S., Timmers A. C., Niebel A., Herve C., Boutet E., Bono J. J., Imberty A., Cullimore J. V. Characterization of four lectin-like receptor kinases expressed in roots of Medicago truncatula. Structure, location, regulation of expression, and potential role in the symbiosis with Sinorhizobium meliloti Plant Physiol 2003 133, N 4:1893– 1910.
[79] Kardailsky I. V., Sherrier D. J., Brewin N. J. Identification of a new pea gene, PsNlec1, encoding a lectin-like glycoprotein isolated from the symbiosomes of root nodules Plant Physiol 1996 111, N 1:49–60.
[80] Sherrier D. J., Borisov A. Y., Tikhonovich I. A., Brewin N. J. Immunocytological evidence for abnormal symbiosome development in nodules of the pea mutant line Sprint2Fix– (sym31) Protoplasma 1997 199, N 1–2:57–68.
[81] Bolanos L., Redondo-Nieto M., Rivilla R., Brewin N. J., Bonilla I. Cell surface interactions of Rhizobium bacteroids and other bacterial strains with symbiosomal and peribacteroid membrane components from pea nodules Mol. Plant Microbe Interact 2004 17, N 2:216–223.
[82] van Rhijn P., Goldberg R. B., Hirsch A. M. Lotus corniculatus nodulation specificity is changed by the presence of a soybean lectin gene Plant Cell 1998 10, N 8:1233–1250.
[83] Sreevidya V., Hernandez-Oane R., So R., Sullia S., Stacey G., Ladha J., Reddy P. Expression of the legume symbiotic lectin genes and promotes rhizobial colonization of roots in rice Plant Sci 2005 169, N 4:726–736.
[84] D'Haeze W., Holsters M. Nod factor structures, responses, and perception during initiation of nodule development Glycobiology 2002 12, N 6:79R–105R.
[85] Kosenko L. V., Mandrovskaya N. M. Influence of pea lectin on growth of pea microsymbiont and exoglycans biosynthesis Microbiology (Russia) 1998 67, N 5:626–630.
[86] Lodeiro A. R., Lopez-Garcia S. L., Vazquez T.E., Favelukes G. Stimulation of adhesiveness, infectivity, and competitiveness for nodulation of Bradyrhizobium japonicum by its pretreatment with soybean seed lectin FEMS Microbiol. Lett 2000 188, N 2:177–184.
[87] Perez-Gimenez J., Mongiardini E. J., Althabegoiti M. J., Quelas J. I., Lopez-Garcia S. L., Lodeiro A. R. Soybean lectin enhances biofilm formation by Bradyrhizobium japonicum in the absence of plants Int. J. Microbiol 2009 2009 ID 719367, 8 p.
[88] Martinez C. R., Albertini A. V. P., Figueirdo M. V. B., Silva V. L., Sampaio A. H., Cavada B. S., Lima-Filho J. L. Respiratory stimulus in Rhizobium sp. by legume lectins World J. Microbiol. Biotechnol 2004 20, N 1:77–83.
[89] Melnykova NM, Kovalchuk NV, Kots SYa, Musatenko LI. Influence of soybean seeds lectins on the legume-rhizobium symbiosis formation and functioning. Fiziologiia i biokhimiia kul'turnykh rasteniy. 2009; 41(5):439-46.
[90] Halverson L. J., Stacey G. Effect of lectin on nodulation by wild-type Bradyrhizobium japonicum and a nodulation-defective mutant Appl. Environ. Microbiol 1986 51, N 4:753–760.
[91] Ridge R. W., Rolfe B. G. Lectin binding to the root and root hair tips of the tropical legume Macroptilium atropurpureum Urb. Appl. Environ. Microbiol 1986 51, N 2:328–332.
[92] Frenzel A., Manthey K., Perlick A. M., Meyer F., Puhler A., Kuster H., Krajinski F. Combined transcriptome profiling reveals a novel family of arbuscular mycorrhizal-specific Medicago truncatula lectin genes Mol. Plant Microbe Interact 2005 18, N 8:771–782.
[93] Karpati E., Kiss P., Ponyi T., Fendrik I., de Zamaroczy M., Orosz L. Interaction of Azospirillum lipoferum with wheat germ agglutinin stimulates nitrogen fixation J. Bacteriol 1999 181, N 13:3949–3955.
[94] Antonyuk L. P., Ignatov V. V. The role of wheat germ agglutinin in plant–bacteria interactions: a hypothesis and the evidence in its support Russ. J. Plant Physiol 2001 48, N 3:364–369.
[95] Karpova I. S., Koretskaya N. V. Study on modifying action of lectins on the toxic and mutagenic effects of Ni (II) ions in Bacillus subtilis culture Biopolym. Cell 2003 19, N 3 P. 224–230.
[96] Rudiger H., Gabius H. J. Plant lectins: occurrence, biochemistry, functions and applications Glycoconj. J 2001 18, N 8 P. 589–613.
[97] Qureshi I. A., Dash P. K., Srivastava P. S., Koundal K. R. Isolation and characterization of a lectin gene from seeds of chickpea (Cicer arietinum L.) DNA Seq 2007 18, N 3:196–202.
[98] Chen Y., Peumans W. J., Hause B., Bras J., Kumar M., Proost P., Barre A., Rouge P., van Damme E. J. Jasmonate methyl ester induces the synthesis of a cytoplasmic/nuclear chitooligosaccharide-binding lectin in tobacco leaves FASEB J 2002 16, N 8 P. 905–907.
[99] Grunwald I., Heinig I., Thole H. H., Neumann D., Kahmann U., Kloppstech K., Gau A. E. Purification and characterization of a jacalin-related, coleoptile specific lectin from Hordeum vulgare Planta 2007 226, N 1:225–234.
[100] Jiang J. F., Han Y., Xing L. J., Xu Y. Y., Xu Z. H., Chong K. Cloning and expression of a novel cDNA encoding a mannose-specific jacalin-related lectin from Oryza sativa Toxicon 2006 47, N 1:133–139.
[101] Baimiev Al. Kh., Gubaidullin I. I., Baimiev An. Kh., Chemeris A. V. The effects of natural and hybrid lectins on the legume-rhizobium interactions Appl. Biochem. Microbiol 2009 45, N 1 P. 74–80.
[102] Nagadhara D., Ramesh S., Pasalu I. C., Rao Y. K., Sarma N. P., Reddy V. D., Rao K. V. Transgenic rice plants expressing the snowdrop lectin gene (gna) exhibit high-level resistance to the whitebacked planthoper (Sogatella furcifera) Theor. Appl. Genet 2004 109, N 7:1399–1405.
[103] Lin P., Ye X., Ng T. Purification of melibiose-binding lectins from two cultivars of chinese black soybeans Acta Biochim Biophys. Sin (Shanghai) 2008 40, N 12:1029–1038.
[104] Krugova O. D., Mandrovs'ka N. M., Kyrychenko O. V. Effect of exogenous lectin on the endogenous lectin activity and the activity of antioxidant enzymes and flavonoid content in wheat Ukr. Biokhim. Zh 2006 78, N 2:106–112.