Biopolym. Cell. 2011; 27(6):446-452.
Structure and Function of Biopolymers
Influence of zinc ions on myosin ATPase activity and superprecipitation reaction of actomyosin of cardiac muscle
1Bogutska K. I., 1Prylutskyy Yu. I.
  1. Educational and Scientific Center "Institute of Biology",
    Taras Shevchenko National University of Kyiv
    64/13, Volodymyrska Str., Kyiv, Ukraine, 01601

Abstract

Aim. To study the influence of zinc ions on the ATP-hydrolase reaction, catalyzed by myosin, and the superprecipitation (SPP) reaction of actomyosin cardiac muscle. Methods. Preparative protein chemistry, ion-exchange chromatography and optical spectroscopy. Results. It was shown that zinc ions in the range of concentrations 0.1–5 mM inhibit the Ca2+-ATPase myosin activity and Mg2+-dependent SPP reaction of actomyosin cardiac muscle. The original results were compared with the well-known data on the influence of other bivalent ions – strontium and cadmium – on the above processes. Conclusions. Zinc ions, probably by replacing the calcium and magnesium ions in the SPP reaction and ATP-hydrolase process, can modulate the actin- myosin interaction by changing the functional characteristics of muscle actomyosin macromolecules. The obtained results extend the existing understanding of the mechanisms of physical and chemical envi- ronmental factors influence, in particular metal ions, on the enzymatic activity of ATP-hydrolases, namely myocardium myosin ATPase.
Keywords: myosin, actomyosin, ATPase, zinc ions, cardiac muscle

References

[1] Suprun A. D., Danilova V. M., Prylutsky Yu. I., Shut A. M. Physics of functioning proteins Kyiv: Way, 2004 90 p.
[2] Skalniy A. V., Rudakov I. A. Bioelements in medicine Moscow: Onix 21 Century, 2004 272 p.
[3] Okuneva G. N., Cherniavskii A. M., Levicheva E. N., Volkov A. M., Trunova V. A., Zvereva V. V. Content of microelements in left ventricular myocardium of patients with ischemic heart disease. Data of roentgenofluorescent analysis with the use of synchrotron irradiation Kardiologiia 2006 46, N 10 P. 13–17.
[4] Hirano T., Murakami M., Fukada T., Nishida K., Yamasaki S., Suzuki T. Roles of zinc and zinc signaling in immunity: zinc as an intracellular signaling molecule Adv. Immunol 2008 97 P. 149–176.
[5] Maret W. Metals on the move: zinc ions in cellular regulation and in the coordination dynamics of zinc proteins Biometals 2011 24, N 3 P. 411–418.
[6] Jing M. Y., Sun J. Y., Wang J. F. The effect of peripheral administration of zinc on food intake in rats fed Zn-adequate or Zn-deficient diets Biol. Trace. Elem. Res 2008 124, N 2 P. 144–156.
[7] Lopez V., Keen C. L., Lanoue L. Prenatal zinc deficiency: influence on heart morphology and distribution of key heart proteins in a rat model Biol. Trace Elem. Res 2008 122, N 3 P. 238–255.
[8] Torres C., Jarreta B. M., Alegret R., Hernandez del Rincon J. P., Falcon M., Gomez Zapata M., Perez-Carceles M. D., Osuna E., Luna A. Analysis of ionic ratios in the interventricular wall and their relation with cardiac damage as seen in anatomo-pathological and cardiac biomarkers Leg. Med. (Tokyo) 2009 11, Suppl 1 P. S360–S362.
[9] Malavolta M., Giacconi R., Piacenza F., Santarelli L., Cipriano C., Costarelli L., Tesei S., Pierpaoli S., Basso A., Galeazzi R., Lattanzio F., Mocchegiani E. Plasma copper/zinc ratio: an inflammatory/nutritional biomarker as predictor of all-cause mortality in elderly population Biogerontology 2010 11, N 3 P. 309–319.
[10] Valko M., Morris H., Cronin M. T. Metals, toxicity and oxidative stress Curr. Med. Chem 2005 12, N 10 P. 1161–1208.
[11] Glushchenko N., Skalniy A. Toxicity of zincnanoparticles and their biological properties. Actual problems of transport medicine 2010 N 3 P. 118–121.
[12] Liu Q., Cai H., Xu Y., Xiao L., Yang M., Wang P. Detection of heavy metal toxicity using cardiac cell-based biosensor Biosens. Bioelectron 2007 22, N 12 P. 3224–3229.
[13] Lech T., Sadlik J. K. Zinc in postmortem body tissues and fluids Biol. Trace Elem. Res 2011 142, N 1 P. 11–17.
[14] Maret W. Molecular aspects of human cellular zinc homeostasis: redox control of zinc potentials and zinc signals Biometals 2009 22, N 1 P. 149–157.
[15] Palmer B. M., Vogt S., Chen Z., Lachapelle R. R., Lewinter M. M. Intracellular distributions of essential elements in cardiomyocytes J. Struct. Biol 2006 155, N 1 P. 12–21.
[16] Anzellotti A. I., Farrell N. P. Zinc metalloproteins as medicinal targets Chem. Soc. Rev 2008 37, N 8 P. 1629–1651.
[17] Korichneva I. Zinc dynamics in the myocardial redox signaling network Antioxid. Redox Signal 2006 8, N 9–10 P. 1707– 1721.
[18] Tuncay E., Bilginoglu A., Sozmen N. N., Zeydanli E. N., Ugur M., Vassort G., Turan B. Intracellular free zinc during cardiac excitation-contraction cycle: calcium and redox dependencies Cardiovasc. Res 2011 89, N 3 P. 634–642.
[19] Becker J. S., Breuer U., Hsieh H. F., Osterholt T., Kumtabtim U., Wu B., Matusch A., Caruso J. A., Qin Z. Bioimaging of metals and biomolecules in mouse heart by laser ablation inductively coupled plasma mass spectrometry and secondary ion mass spectrometry Anal. Chem 2010 82, N 22 P. 9528–9533.
[20] Bozym R. A., Chimienti F., Giblin L. J., Gross G. W., Korichneva I., Li Y., Libert S., Maret W., Parviz M., Frederickson C. J., Thompson R. B. Free zinc ions outside a narrow concentration range are toxic to a variety of cells in vitro Exp. Biol. Med. (Maywood) 2010 235, N 6 P. 741–750.
[21] Atahan E., Ergun Y., Kuruta E. B., Alici T. Protective effect of zinc aspartate on long-term ischemia-reperfusion injury in rat skeletal muscle Biol. Trace Elem. Res 2010 137, N 2 P. 206–215.
[22] Antonov A. R., Vas'kina E. A., Cherniakin Iu. D. Exchange of biometals in myocardial infarction: a clinical and experimental study Patol. Fiziol. Eksp. Ter 2009 N 4 P. 8–10.
[23] Kamalov G., Ahokas R. A., Zhao W., Shahbaz A. U., Bhattacharya S. K., Sun Y., Gerling I. C., Weber K. T. Temporal responses to intrinsically coupled calcium and zinc dyshomeostasis in cardiac myocytes and mitochondria during aldosteronism Am. J. Physiol. Heart Circ. Physiol 2010 298, N 2: H385–H394.
[24] Margossian S. S. Reversible dissociation of dog cardiac myosin regulatory light chain 2 and its influence on ATP hydrolysis J. Biol. Chem 1985 260, N 25 :13747–13754.
[25] Severin S. E., Solov'eva G. A. Biochemical praktics Leningrad: LGU, 1989 509 p.
[26] Hogstrand C., Verbost P. M., Wendelaar Bonga S. E. Inhibition of human erythrocyte Ca2+-ATPase by Zn2+ Toxicology 1999 133, N 2–3 P. 139–145.
[27] Bogutska K., Minchenko P., Minchenko O. The influence of strontium ions on conformational changes of cardiac and skeletal muscles actomyosin Bulletin of Kiev National Taras Shevchenko University. Biology 2008 Is. 52 53 P. 24–26.
[28] Bogutska K., Minchenko P. The influence of cadmium ions on the superprecipitation reaction of cardiac and skeletal muscles actomyosin Bulletin of Kiev National Taras Shevchenko University. Biology 2010 s. 56 P. 21–23.
[29] Tikunov B. A. The effect of magnesium ions on the two-stage kinetics of superprecipitation and ATPase activity of natural actomyosin Biokhimiia 1990 55, N 5 P. 822–828.
[30] Krupianko V. I. Distribution of the inhibiting activity among bivalent metal cations Biokhimiia 1988 53, N 6 P. 905–911.
[31] The general chemistry / Ed. E. Sokolovskaya, G. Vovchenko, L. Goosej Moscow: MGU, 1980 726 p.
[32] Peyser Y. M., Ben-Hur M., Werber M. M., Muhlrad A. Effect of divalent cations on the formation and stability of myosin subfragment 1-ADP-phosphate analog complexes Biochemistry 1996 35, N 14 P. 4409–4416.