Biopolym. Cell. 2011; 27(3):235-245.
Fundamental gap in fundamental biology
1Kordium V. A., 1Andrienko V. I., 1Maslova O. A., 1Shuvalova N. S., 1Irodov D. M., 1Ruban T. A., 1Sukhorada E. M., 1Likhacheva L. I., 1Shpilevaya S. P.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680


The article raises the problems of intracellular spatial and temporal organization of metabolism, signaling, and energy supply of these processes. To provide cell functions, the enzymes of metabolic chains, molecules of signaling pathways, and macroergs (as units of molecular interactions, accompanied by energy consumption) should find their partners and get their precise spatial relationship. The current views are based on ideas of compartmentalization of all processes as local sites of cellular matrix membrane, where specific stages of diffe- rent metabolic cycles take place. The assembly of complexes of macro-molecules in the number and combinations, required for their adequate functioning in the space of a cell, is generally described as intracellular transport of vesicles, implemented by mobile elements of cytoskeleton. Inside the vesicle there is «effective load» – macromolecules. The membranes of these vesicles fuse with specific sites of the matrix membranes and therefore relocate macromolecules. Neither calculations nor assumptions allow explaining precise formation of enzymatic chains, their interaction, signaling, etc. on this basis. Such transport of macromolecules (inside vesicles) enables solving other tasks. The concept of search-and-address systems in the form of space-scanning micro vesicles is proposed and well-grounded for purposes of searching for partners, forming chains and complexes, and building compartments. The micro vesicles collect corresponding chains of enzymes, signaling, and ensure the interactions on their surface. These micro vesicles are exactly those compartments, which provide for both precision of processes and their relationship.
Keywords: metabolism, cell, compartmentalization, vesicle, transport of macromolecules, precision of processes.

Supplementary data


[1] Metzler D. E., Metzler C. M., Sauke D. J. Biochemistry: The chemical reactions of living cells / 2nd ed New York: Acad. press, 2001 Vol. 1, 2.
[2] Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P. Molecular biology of the cell / 4th ed New York: Garland Sci., 2002 1616 p.
[3] Ovadi J., Sacs V. On the origin of intracellular compartmentation and organized metabolic systems Mol. Cell. Biochem 2004 256–257, N 1–2 P. 5–12.
[4] Lodish H., Berk A., Matsudaira P., Kaiser C. A., Krieger M., Scott M. P., Zipursky L., Darnell J. Molecular cell biology / 5th ed New York: W. H. Freeman an Co., 2003 1052 pp.
[5] Nelson D. L., Cox M. M. Lehninger principles of biochemistry / 4th ed New York: Worth Publ., 2004.
[6] Salmon E. D., Saxton W. M., Leslie R. J., Karow M. L., McIntosh J. R. Diffusion coefficient of fluorescein-labeled tubulin in the cytoplasm of embryonic cells of a sea urchin: video image analysis of fluorescence redistribution after photobleaching J. Cell Biol 1984 99, N 6 P. 2157–2164.
[7] Claros M. G., Brunak S., von Heijne G. Prediction of N-terminal protein sorting signals Curr. Opin. Struct. Biol 1997 7, N 3 P. 394–398.
[8] Watari H., Blanchette-Mackie E. J., Dwyer N. K., Glick J. M., Patel S., Neufeld E. B., Brady R. O., Pentchev P. G., Strauss J. F. 3rd. Niemann-Pick C1 protein: obligatory roles for N-terminal domains and lysosomal targeting in cholesterol mobilization Proc. Natl Acad. Sci. USA 1999 96, N 3 P. 805–810.
[9] Gerber S. H., Sudhof T. C. Molecular determinants of regulated exocytosis Diabetes 2002 51, suppl. 1 S3–S11.
[10] Mostov K., Apodaca G., Aroeti B., Okamoto C. Plasma membrane protein sorting in polarized J. Cell Biol 1992 116, N 3 P. 577–583.
[11] Spang A. On vesicle formation and tethering in the ER-Golgi shuttle Curr. Opin. Cell Biol 2009 21, N 4 P. 531–536.
[12] Pfeffer S. R. Multiple routes of protein transport from endosomes to the trans Golgi network FEBS Lett 2009 583, N 23 P. 3811–3816.
[13] Jackson T. Transport vesicles: coats of many colours Curr. Biol 1998 8, N 17 R609–R612.
[14] Robinson D. G., Hinz G., Holstein S. E. The molecular characterization of transport vesicles Plant. Mol. Biol 1998 38, N 1–2 P. 49–76.
[15] Bryksin A. V., Laktionov P. P. Role of glyceraldehyde-3-phosphate dehydrogenase in vesicular transport from Golgi apparatus to endoplasmic reticulum Biochemistry (Moscow) 2008 73, N 6 P. 619–625.
[16] Chaineau M., Danglot L., Galli T. Multiple roles of the vesicular-SNARE TI-VAMP in post-Golgi and endosomal trafficking FEBS Lett 2009 583, N 23 P. 3817–3826.
[17] Miserey-Lenkei S., Chalancon G., Bardin S., Formstecher E., Goud B., Echard A. Rab and actomyosin-dependent fission of transport vesicles at the Golgi complex Nat. Cell Biol 2010 12, N 7 P. 645–654.
[18] Angelucci S., Marchisio M., Di Giuseppe F., Pierdomenico L., Sulpizio M., Eleuterio E., Lanuti P., Sabatino G., Miscia S., Di Ilio C. Proteome analysis of human Wharton's jelly cells during in vitro expansion Proteome Sci 2010 8 P. 18.
[19] Wolosewick J. J., Porter K. R. Microtrabecular lattice of the cytoplasmic ground substance. Artifact or reality J. Cell Biol 1979 82, N 1 P. 114–139.
[20] Levine T., Loewen C. Inter-organelle membrane contact sites: through a glass, darkly Curr. Opin. Cell Biol 2006 18, N 4 P. 371–378.