Biopolym. Cell. 2011; 27(2):154-157.
Bioorganic Chemistry
Synthesis and optical properties of lanthanides doped ultrasmall NaYF4 markers for bio-medical applications
1Podhorodecki A., 1Banski M., 1Misiewicz J.
  1. Institute of Physics, Wroclaw University of Technology
    27, Wyb. Wyspianskiego, Wroclaw, Poland, 50-370

Abstract

Aim. To synthesise NaYF4 nanocrytstals doped or co-doped with different lanthanide ions (Eu, Tb, Gd) and to investigate them optically to achieve efficient optical markers. Methods. Samples have been synthesized by using co-thermolizys method and optical properties have been investigated by using photoluminescence (PL), PL excitation and PL decay spectroscopies. Results. Efficient emission in visible spectra range has been observed for all investigated samples. The excitation mechanism of the main emission centre has been explained. Conclusions. It has been shown that the main excitation mechanism of Eu ions is through energy transfer from Tb or Gd ions. Moreover, it has been shown that obtained by us nanocrystals characterize by strong emission which make them potential as efficient optical markers in biology or medicine.
Keywords: optical markers, nanocrystals, lanthanides, NaYF4

References

[1] Azzazy H. M., Mansour M. M., Kazmierczak S. C. Nanodiagnostics: a new frontier for clinical laboratory medicine Clin. Chem 2006 52, N 7 P. 1238–1246.
[2] Akerman M. E., Chan W. C., Laakkonen P., Bhatia S. N., Ruoslahti E. Nanocrystal targeting in vivo Proc. Natl Acad. Sci. USA 2002 99, N 20 P. 12617–12621.
[3] Michalet X., Pinaud F. F., Bentolila L. A., Tsay J. M., Doose S., Li J. J., Sundaresan G., Wu A. M., Gambhir S. S., Weiss S. Quantum dots for live cells, in vivo imaging, and diagnostics Science 2005 307, N 5709 P. 538–544.
[4] Bruchez M. Jr., Moronne M., Gin P., Weiss S., Alivisatos A. P. Semiconductor nanocrystals as fluorescent biological labels Science 1998 281, N 5385 P. 2013–2016.
[5] Bilyy R., Podhorodecki A., Nyk M., Stoika R., Zaichenko A., Zatryb G., Misiewicz J., Strek W. Utilization of GaN:Eu3+ nanocrystals for the detection of programmed cell death Physica E: Low-dimensional Systems and Nanostructures 2008 40, N 6 2096–2099.
[6] Derfus A. M., Chan W. C. W., Bhatia S. N. Probing the cytotoxicity of semiconductor quantum dots Nano Lett 2004 4, N 1 P.11–18.
[7] Chen J., Guo C., Wang M., Huang L., Wang L., Mi C., Li J., Fang X., Mao C., Xu S. Controllable synthesis of NaYF4:Yb, Er upconversion nanophosphors and their application to in vivo imaging of Caenorhabditis elegans J. Mater. Chem 2011 21, N 8 P. 2632–2638.
[8] Li Z., Wang L., Wang Z., Liu X., and Xiong Y. Modification of NaYF4:Yb,Er@SiO2 nanoparticles with gold nanocrystals for tunable green-to-red upconversion emissions J. Phys. Chem. C 2011 115, N 8 P. 3291–3296.
[9] Budijono S. J., Shan J., Yao N., Miura Y., Hoye T., Austin R. H., Ju Y., Prud'homme R. K. Synthesis of stable block-copolymer-protected NaYF4:Yb3+, Er3+ up-converting phosphor nanoparticles Chem. Mater 2010 22, N 2 P. 311–318.
[10] Chen C., Sun L. D., Li Z. X., Li L. L., Zhang J., Zhang Y. W., Yan C. H. Ionic liquid-based route to spherical NaYF4 nanoclusters with the assistance of microwave radiation and their multicolor upconversion luminescence Langmuir 2010 26, N 11 P. 8797–8803.
[11] Abdul Jalil R., Zhang Y. Biocompatibility of silica coated NaYF (4) upconversion fluorescent nanocrystals Biomaterials 2008 29, N 30 P. 4122–4128.
[12] van de Rijke, F., Zijlmans H., Li S., Vail T., Raap A. K., Niedbala R. S., Tanke H. J. Up-converting phosphor reporters for nucleic acid microarrays Nat. Biotechnol 2001 19, N 3 P. 273– 276.
[13] Shan J., Qin X., Yao N., Ju Y. Synthesis of monodisperse hexagonal NaYF4:Yb, Ln (Ln = Er, Ho and Tm) upconversion nanocrystals in TOPO Nanotechnology 2007 18, N 44 P. 445607.