Biopolym. Cell. 2011; 27(2):132-140.
Molecular Biomedicine
Metabolic syndrome is inversely related to soluble receptor for advanced glycation end products:
a study in mother-infant pairs
- Slovak Medical University
12, Limbova St., Bratislava, Slovak Republic, 83303 - 2nd Department of Pediatrics, Faculty of Medicine, Comenius University
1, Limbova St., Bratislava, Slovak Republic, 83340 - Division of Nephrology & Institute of Pathology, RWTH University of Aachen
30, Pauwelsstrabe, Aachen, Germany, 52074 - Institute of Molecular BioMedicine, Faculty of Medicine, Comenius University
4, Sasinkova St., Bratislava, Slovak Republic, 81104
Abstract
Aim. In the elderly subjects metabolic syndrome (MetS) seems to be associated with low levels of circulating protective soluble receptor for advanced glycation end products (sRAGE). This secondary study aimed to answer whether this phenomenon is manifested from early childhood. Methods. 73 mothers and their 77 infants (4-to-12-months of age) were included in the study. Mothers were classified according to the presence of MetS components as negative (n = 32), those with pre-MetS (insulin resistance + 1 sign of MetS, n = 27) and overt MetS (n = 14). sRAGE and carboxymethyllysine (CML) were determined in the mothers and the infants. Results. Mothers with pre- and overt MetS displayed lower sRAGE levels, while in their children only a trend towards decline was observed. sRAGE levels significantly and inversely correlated with insulin sensitivity and BMI/body weight. No difference in CML levels across the groups was observed. Conclusions. Metabolic syndrome is associated with decreased levels of sRAGE in the mothers and a tendency towards decline of sRAGE in their offspring. Infants of mothers with MetS maintain normoglycemia on the account of higher insulin levels.
Keywords: metabolic syndrome, mother-child pairs, QUICKI, sRAGE, insulin resistance, CML
Full text: (PDF, in English)
References
[1]
Miyata T., Wada Y., Cai Z., Iida Y., Horie K., Yasuda Y., Maeda K., Kurokawa K., van Ypersele de Strihou C. Implication of an increased oxidative stress in the formation of advanced glycation end products in patients with end-stage renal failure Kidney Int 1997 51, N 4 P. 1170–1181.
[2]
Brownlee M., Cerami A., Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications N. Engl. J. Med 1988 318, N 20 P. 1315–1321.
[3]
Schmidt A. M., Yan S. D., Wautier J. L., Stern D. Activation of receptor for advanced glycation end products: a mechanism for chronic vascular dysfunction in diabetic vasculopathy and atherosclerosis Circ. Res 1999 84, N 5 P. 489–497.
[4]
Bierhaus A., Schiekofer S., Schwaninger M., Andrassy M., Humpert P. M., Chen J., Hong M., Luther T., Henle T., Kloting I., Morcos M., Hofmann M., Tritschler H., Weigle B., Kasper M., Smith M., Perry G., Schmidt A. M., Stern D. M., Haring H. U., Schleicher E., Nawroth P. P. Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB Diabetes 2001 50, N 12 P. 2792–2808.
[5]
Yonekura H., Yamamoto Y., Sakurai S., Petrova R. G., Abedin M. J., Li H., Yasui K., Takeuchi M., Makita Z., Takasawa S., Okamoto H., Watanabe T., Yamamoto H. Novel splice variants of the receptor for advanced glycation endproducts expressed in human vascular endothelial cells and pericytes, and their putative roles in diabetes-induced vascular injury Biochem. J 2003 370, N 3 P. 1097–1109.
[6]
Geroldi D., Falcone C., Emanuele E., D'Angelo A., Calcagnino M., Buzzi M. P., Scioli G. A., Fogari R. Decreased plasma levels of soluble receptor for advanced glycation end-products in patients with essential hypertension J. Hypertens 2005 23, N 9 P. 1725–1729.
[7]
Basta G., Sironi A. M., Lazzerini G., Del Turco S., Buzzigoli E., Casolaro A., Natali A., Ferrannini E., Gastaldelli A. Circulating soluble receptor for advanced glycation end products is inversely associated with glycemic control and S100A12 protein J. Clin. Endocrinol. Metab 2006 91, N 11 P. 4628–4634.
[8]
Koyama H., Shoji T., Yokoyama H., Motoyama K., Mori K., Fukumoto S., Emoto M., Shoji T., Tamei H., Matsuki H., Sakurai S., Yamamoto Y., Yonekura H., Watanabe T., Yamamoto H., Nishizawa Y. Plasma level of endogenous secretory RAGE is associated with components of the metabolic syndrome and atherosclerosis Arterioscler. Thromb. Vasc. Biol 2005 25, N 12 P. 2587–2593.
[9]
Koyama H., Yamamoto H., Nishizawa Y. Endogenous secretory RAGE as a novel biomarker for metabolic syndrome and cardiovascular diseases Biomark. Insights 2007 2, N 1 P. 331–339.
[10]
Wilson P. W., D'Agostino R. B., Parise H., Sullivan L., Meigs J. B. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus Circulation 2005 112, N 20 P. 3066–3072.
[11]
Fulop T., Tessier D., Carpentier A. The metabolic syndrome Pathol. Biol. (Paris) 2006 54, N 7 P. 375–386.
[12]
Hildrum B., Mykletun A., Hole T., Midthjell K., Dahl A. A. Agespecific prevalence of the metabolic syndrome defined by the International Diabetes Federation and the National Cholesterol Education Program: the Norwegian HUNT 2 study BMC Public Health 2007 7 P. 220.
[13]
Mokan M., Galajda P., Pridavkova D., Tomaskova V., Sutarik L., Krucinska L., Bukovska A., Rusnakova G. Prevalence of diabetes mellitus and metabolic syndrome in Slovakia Diabetes Res. Clin. Pract 2008 81, N 2 P. 238–242.
[14]
Sebekova K., Saavedra G., Zumpe C., Somoza V., Klenovicsova K., Birlouez-Aragon I. Plasma concentration and urinary excretion of N epsilon-(carboxymethyl)lysine in breast milkand formula-fed infants Ann. N. Y. Acad. Sci 2008 1126 P. 177–180.
[15]
Boor P., Celec P., Klenovicsova K., Vlkova B., Szemes T., Minarik G., Turna J., Sebekova K. Association of biochemical parameters and RAGE gene polymorphisms in healthy infants and their mothers Clin. Chim. Acta 2010 411, N 15–16 P. 1034–1040.
[16]
Hrebicek J., Janout V., Malincikova J., Horakova D., Cizek L. Assessment and prevention detection of insulin resistance by simple quantitative insulin sensitivity check index QUICKI for epidemiological assessment and prevention J. Clin. Endocrinol. Metab 2002 87, N 1 P. 144–147.
[17]
Katz A., Nambi S. S., Mather K., Baron A. D., Follmann D. A., Sullivan G., Quon M. J. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans J. Clin. Endocrinol. Metab 2000 85, N 7 P. 2402– 2410.
[18]
Sullivan C. M., Futers T. S., Barrett J. H., Hudson B. I., Freeman M. S., Grant P. J. RAGE polymorphisms and the heritability of insulin resistance: the Leeds family study Diab. Vasc. Dis. Res 2005 2, N 1 P. 42–44.
[19]
Gaens K. H. J., Ferreira I., van der Kallen C. J. H., van Greevenbroek M. M. J., Blaak E. E., Feskens E. J. M., Dekker J. M., Nijpels G., Heine R. J., 't Hart L. M., de Groot P. G., Stehouwer C. D. A., Schalkwijk C. G. Association of polymorphism in the receptor for advanced glycation end products (RAGE) gene with circulating RAGE levels J. Clin. Endocrinol. Metab 2009 94, N 12 P. 5174–5180.
[20]
Jang Y., Kim J. Y., Kang S. M., Kim J. S., Chae J. S., Kim O. Y., Koh S. J., Lee H. C., Ahn C. W., Song Y. D., Lee J. H. Association of the Gly82Ser polymorphism in the receptor for advanced glycation end products (RAGE) gene with circulating levels of soluble RAGE and inflammatory markers in nondiabetic and nonobese Koreans Metabolism 2007 56, N 2 P. 199–205.
[21]
Yamagishi S., Adachi H., Nakamura K., Matsui T., Jinnouchi Y., Takenaka K., Takeuchi M., Enomoto M., Furuki K., Hino A., Shigeto Y., Imaizumi T. Positive association between serum levels of advanced glycation end products and the soluble form of receptor for advanced glycation end products in nondiabetic subjects Metabolism 2006 55, N 9 P. 1227–1231.
[22]
Kim O. Y., Jo S. H., Jang Y., Chae J. S., Kim J. Y., Hyun Y. J., Lee J. H. G allele at RAGE SNP82 is associated with proinflammatory markers in obese subjects Nutr. Res 2009 29, N 2 P. 106–113.
[23]
Sebekova K., Somoza V., Jarcuskova M., Heidland A., Podracka L. Plasma advanced glycation end products are decreased in obese children compared with lean controls Int. J. Pediatr. Obes 2009 4, N 2 P. 112–118.
[24]
Gaens K. H. J., van de Waarenburg M. P. H., Nijhuis J., Scheijen J., Stehouwer C. D. A., Schalkwijk C. G. Increased formation of Ne(carboxymethyl)lysine (CML) in human adipose tissue; possible biological consequences 9th Int. Symp. on the Maillard Reaction (1–5 Sept., Munich, Germany) Munich, 2007 P. 64.
[25]
Owen C. G., Martin R. M., Whincup P. H., Smith G. D., Cook D. G. Does breastfeeding influence risk of type 2 diabetes in later life? A quantitative analysis of published evidence Am. J. Clin. Nutr 2006 84, N 5 P. 1043–1054.
[26]
Das U. N. The lipids that matter from infant nutrition to insulin resistance Prostaglandins, Leukot. Essent. Fatty Acids 2002 67, N 1 P. 1–12.
[27]
Vaarala O., Knip M., Paronen J., Hamalainen A. M., Muona P., Vaatainen M., Ilonen J., Simell O., Akerblom H. K. Cow's milk formula feeding induces primary immunization to insulin in infants at genetic risk for type 1 diabetes Diabetes 1999 48, N 7 P. 1389–1394.
[28]
Savino F., Fissore M. F., Liguori S. A., Oggero R. Can hormones contained in mothers' milk account for the beneficial effect of breast-feeding on obesity in children? Clin. Endocrinol. (Oxf) 2009 71, N 6 P. 757–765.
[29]
Hozawa A., Jacobs D. R. Jr., Steffes M. W., Gross M. D., Stef fen L. M., Lee D. H. Associations of serum carotenoid concentrations with the development of diabetes and with insulin concentration: interaction with smoking: the Coronary Artery Risk Development in Young Adults (CARDIA) study Am. J. Epidemiol 2006 163, N 10 P. 929–937.
[30]
Sugiura M., Nakamura M., Ikoma Y., Yano M., Ogawa K., Matsumoto H., Kato M., Ohshima M., Nagao A. The homeostasis model assessment-insulin resistance index is inversely associated with serum carotenoids in non-diabetic subjects J. Epidemiol 2006 16, N 2 P. 71–78.
[31]
Sluijs I., Beulens J. W., Grobbee D. E., van der Schouw Y. T. Dietary carotenoid intake is associated with lower prevalence of metabolic syndrome in middle-aged and elderly men J. Nutr 2009 139, N 5 P. 987–992.